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PREFACE

The present Ixiok is the outgrowth of lectures given at various

times to students of the later undergraduate and earlier graduate

years. It anus to present soinr ol the general concepts and methods

which are necessarv tor advanced work in algebraic geoiuetr\ (as

distinguished tViiin dit'fei'eiit ial income tr\ ), hut which are not now

aeeessihle to the Student ill ailV olie \i'lllllle. and thus to bridge

the '4'ap between the usual text in analytic geometry and treatises

or articles on special topics.

With this object in view the author has assumed vrrv little

mathematical preparation on the part of the student hevond that

acquired in elementary courses in calculus and plane analytic <_:'eoni-

etrv. In addition it has hcen necessarv to assume a slight knowl-

edge of determinants, especially as applied to the solution of linear

ei|Uatii>ns. such as mav he acquired in a verv short course on the sub-

ject. Hut it has not heeii assumed that the student has had a course

in higher algebra, including mat rices, linear su list it tit ions, invariants,

and similar topics, and no ettort has heeii made to include a dis-

cussion of these sllhjeets ill the text. This restriction ill the tools

to he used necessitates at times modes of expression and methods

of proof which are a little cumbersome, but the appeal t<> a larger

number of readers seems to justify the occasional lack of elegance.

In preparing the text one of the greatest problems has consisted

in determining what matters to exclude. It is obvious that an

introduction to geometry cannot contain all that is known on anv

subject or even refer bricllv to all general topic-. The matter of

selection is necessarily one of individual judgment. < >ne lapjv

domain ot u'coniet rv has been delililtelv excluded troin the plan ol

the book : namely, that of differential geometry. In the tield uhieh

i- left the author cannot dare to hope thai his choice of material

will agree exactly \\ith that which \\oii Id he made by an\ other

teacher. lie hope-. howes er, that his choice has heel] sufficiently

\\i-e lo make I he hook USelul |o liial!\ besides Ililllscll
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The plan of the hook calls for a study of different coordinate

systems, hased upon various geometric elements and classified

according to the inuiiher of dimensions involved. This leads natu-

rallv to a final discussion of /^-dimensional geometry in an ahstraet

sense, of which the particular geometries studied earlier form con-

crete illustrations. As each system of coordinates is introduced, the

meaning of the linear and the quadratic equations is studied. The

student is thus primarily drilled in the interpretation of equations,

hut acquires at the same time a knowledge of useful geometric facts.

The principle of duality is constantly in view, and the nature of

imaginary elements and the conventional character of the locus at

infinity, dependent upon the type of coordinates used, are carefully

explained.

Numerous exercises for the student have been introduced. In

some cases these carry a little farther the discussion of the text,

hut care has been taken to keep their difficulty within the range

of the student's ability.
FRKDKKK'K S. WOODS
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PART I. (iKNKHAL CONVKITS AM)
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(TIAPTKR I

GENERAL CONCEPTS

1. Coordinates. A set of // variables, the values of which lix a

geometric ob|ect, are called the rtiorthnnt^x ot the object. 1 he ana-

Iviic geonietrv \vhieh is developed bv the use of these coordinates

has as its </<'//;</// the object tixed bv the coordinates. The reader

is familiar with the use of coordinates to lix a point either in the

plane or iu space. The point is the element of eleineiitarv aua-

Ivtic geometrv, and all figures are studied as made up of points.

There is, however, no theoretical objection to using anv geometric

ti'_nire as the element ot a ^cornet rv. In the following pa
c

_;'es we

shall discuss, among other possibilities, the use of the straight line,

the plane, the circle, and the sphere.

The tUi/irnxiunx ot a svstein ot geomeirv are determined bv the

number of the coordinates neeessarv to lix the element. Thus

the geonietrv in which the element is either the point in the plane

or the straight hue in the plane is two-dimensional; the u'eoinetry

in which the element is the point in space, the circle in the plane,

or the plane in >pace is three-dimensional: the '''comet rv in whichII O .

the element is the straight line or the sphere iii space is four-

dim e n > i n n a 1 .

Since each coordinate mav take an infinite number ot values,

the fact thai a geonietrv has // dimensions i< often indicated hv

saving that the totalitv of element-, form an f." extent. Tim- the

points in -pace form an /.'"' extent, while the sii'ai^hl line- in

space form an /
'

extent. It m an //' extent the coordinates ot an

element are connected bv /' independent condition-, the elements

1
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satisfying the conditions form an -fJ'
'

extent lyin^ in the x"

extent. Thus a single equation between the coordinates ot a point

in space defines an f.~ extent (a .surface) Ivin^' in an r.'' extent

(space), and two equations between the coordinates ot a point in

space dctine an s.
'' extent (a carve).

2. The principle of duality. When the element has been selected

and its coordinates determined, the development ot the j^eometrv

consists in studying the meaning of equations and relations con-

necting the coordinates. There are therefore t\vo distinct parts to

anahtic -jvonietrv, the analvtie work and the geometric interpreta-

tion. Two svstrins of <4Vonietrv depending upon different elements

\\iih the same nnmher of coordinates will have the same analytic

e\pre>sion and will differ only in the interpretation of the analy-

sis. In such a case it is often snl'licieiit to know the meaning of

the coordinates and the interpretation of a few fundamental rela-

tions in cadi system in order to tind for a theorem in one ^eoin-

etrv a corresponding theorem in the other. Two systems which

have such a relation to each other are said to he iliiiilixt'n; or to

correspond to each other l>v the nriitfiiilf t' ilun/if //.

It is ohvionslv inconvenient to inve examples of this principle

at this time. lnt the reader will tind numerous examples in the

pa'4'es of this hook.

3. The use of imaginaries. Between the coiirdinates of a geo-

metric element and the element Itselt there tails to he pel'lect equiv-

alence unless the concept ot an imaginary element is introduced.

('oiisider, tor example, the usual ('artesian coordinates (r, _// ) of a

point in a plane. If we understand hv a
"

real poinl
"
one \\hich has

a po>ition on the plane wliieh ma\' he represented h\' a pencil dot.

then to anv real pair ot values ot .r and // corresponds a real point,

and ciiiiyrrsrly. It is highly inconvenient. ho\\c\'cr. to limit our-

selves 111 the aiialvlic Wol'k to real \allles of the \ariahles. \\*e

accordiiiLi'U introduce the convention ot an imaginary point l>v

s, IN in- iii.it a pair of values of , and // of which one or hot h is a

complex i

plant it v de tines siidi a point. In this sense a point

is nothing inure than a concise expression tor a \aliie pair ( ./'. // ).

I* rom tins standpoint many propositions ot analytic ^cometr\

are partly theorems and parllv ddinitions. I-'or example, take the

pi : ciiiiat ion of the tirsl decree represents a straight
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line. This is a theorem us t'ur us ivul points und reul lines ure

concerned, hut it is u detinition tor imaginary points suiist'\ in^ un

((juution \\'ith real coefficients und for ull points satisfying un eipiu-

tion with conipli-x coeilieients. The detinition in <jiirstii>n is thut

u struight line is the totulity of ull vulue puirs ( ./, // ) which >utisfy

uiiv lineur e([iiutioii.

Anv pmposit ion proved for reul 1 inures niuv le extended to ima'_r -

inurv ligmvs pro\ ided thut the proof is pnrelv un unuK'tie one

which is independent of the reulitv of the (juuntities involved.

One cannot, however, extend theorems which ure not unulvtie in

their nutnre. I-'or example, it is proved for u reul triangle that the

length ot unv side is less than the sum ot the lengths ot the

other two sides. The length of the side connecting the vertices

(.r
}

,

//!
) and

(./.,,//._,)
is \'

7

(
.'\ .''.,)"+(//, //.,)' \V' may extend

this detinition ot length to imuginury points, hut the theorem con-

cerning the sides of u triangle cunnot he proved unulvtieullv and

is not true for imuu'inaries, us niuv he seen hv testing it for the

triangle whose vertices are (<>, <). ( ''. 1 ). and ( /. 1 ).

Similar considerations to those we have just stated for u point

in a plane apply to any element. It is usual to have u real element

represented hv real coordinates, hut sometimes it is found con-

venient to represent a real element hy complex coordinates. In

either ca>c there will he found in the analvsis certain comhinat ions

of coordinates which cunnot represent reul elements. In all cases

the ^eometrv is extended h\ ihe convention that such coordinates

represent imaginary elements.

4. Infinity. Inlinitv may occur in a system of L;vonietrv in two

wuvs : tirst, the vulue ot one or more ot the coordinates niuv increase

without limit, or secondly, the element which we suppose 1\ inu'

within the ran^'e of action ot our physical senses may he so displaced

that its distance from its original position increases without limn.

Intinitv in the tir.M sense mav he avoided h\ \\ntni'_;' the coi'ir-

d mutes in the ton n ot rut ios. 1 or a rat 10 increases wit lion t limit when

its denominator approaches /ero. ( 'oi'ird in at es thus written ure culled

/iu//iiii/f-/(,i>iiK I'niirilinut!-*, hecunse eipiutJons \\iMlteii in them heconie

hoiuoj^eiieons. I hev are o| constant n>e in this hook.

'Ihe treatment ot intinitv in the >ecoiid sense i> not >o Dimple.

hut proceeds as follow^ : As an element of the geometry recedes
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indefinitely from its original posh ion, its coordinates usually

approach certain limiting values, which arc said l>v dctinit ion to

represent an clement at inlimtv. '1 he coordinates ot all ele-

ments at infinity usually satisfy a ceilain equation, which is said

to represent the Incus at infinity. '1 he nature ot this locus

depends upon the coordinate svstem. '1 hus, in the plant
1

,
l>v tin-

use n(' one sNstem ot coordinates all "points at infinity"' are said

tii he mi a straight line at infinity ;
hy another system ot coor-

dinates the plane is said to ha\e
'

a single real point at infinity :

liv still another system of coordinates the plane is said to have

t \\'o lines at infinity." These various statements are not contra-

dictory, since they are not intended to express any tact about the

physical properties of the plane. They are simply conventions to

express the \\ av in whiih the coordinate system mav l>e applied

to inlinilelv reunite elements. Then- is no more difficulty in pass-

in LT trnin one convention to another than there is in passing

from one coordinate system to another. The convention as to

elements at infinity stands on the same liasis as the convention as

tn imaginary elements.

5. Transformations. A transformation is an operation by which

each element of a Ljvoinet rv is replaced 1\ another element. The

ne\v (dement may lie ul the same kind as the original element or

nt a different kind. For example, a rotation of a plane ahont a

tixeil pmnt is a transformation of points into points; on the other

hand, a transformation may le made in the plane l>v which each

point ot the plane is replaced hv its polar line with respect to a

fixed conic. \\ c shall consider in this hook mainly tnmli/tn- //<///*-

t'lnmit n,iin, that is, those m \\hich the coordinates ot the trans-

formed clement are analytic functions of those of the original

element .

A transformation mav he conveniently expressed l>v a single

s\ mliol. siich as '/'. If \\ e wish to express the fact that an element.

or a ei i!iti-_ni rat mil o| elements.//, has 1 n-eii t ransldrilled into allot her

'lenient or coiil'iM-iirat ion /-. \\'c \\rite

( 1 )
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result is a single Iniusformutinii fi, and we write

f/ = ,ST, (-J)

where <! is called the i>r<lu<-t of ,S' and '/'.

Siniilurlv, the earning out in succession ot the transfoniiiitioii

'/', then X, and then //. is the product /,'>"/'. This svmbol i> to be

interpreted as meaning that the transforinat ions ai'e to lie carried

out in order from ri'_dit to left. This is important, as the /(/<///</

'</ trttHxfunmttiunx /x H"t mvr.s.xv//'//// <-i>//i////ifnt//-,'. For example, let

7' he the moving of a point through a fixed distance in a fixed

direction and S the replacing' of a point liv its svinniet rical point

with respect to a lixed plane. It is evident in this case that

X7'-7'.s'. (:',)

.1 jtrmlnt't
iif t rii iixt'nriiiitf /'in* /x, /m/i'i'i'i /, (txxwittth't'. To pro\c this,

let /i', .s', and 7' be three t ransl'oriuat ions. \Ve wish to show that

(
/; N

)
T= j;

(
s T

)
= y.'.s r. ( 4 j

In the sense of formula (
1

) let

T(n)=l, ,S'(/)=f, /,'('),= ,/.

Then ( //,S') 7'(^ >: -- i;S(l>) J!( r): i/.

On the other hand. ST(tt )
= S (_/>)= c,

so that /,'( N7'
) (<i)

----- //( ()= </.

This establishes the t heoivm.

If 7' represents an operation, 7'
'

shall represent the hn'i-rxi'

operation: that is, if 7' transforms anv element <t into an element

I', T '

shall transform everv element /< back into the original <i.

The product then of '/' and 7'
'

in an\ order leaves all elements

unchanged. It is natural to call an operation which leave.-- all ele-

ments unchanged an /</(////<'// transformation and to indicate it b\

the s\ nibol 1. \\'e have then the equation

TT '

- 7' '/'-- 1. (o)

II X and 7' an- two transformations, the operation

7',s'7'
'

.s" (ii)

is called the //<///>/'"//// of .S' b\ 7'.

If Nj and .s'.'. are the transforms of N, and N
I'espect ivelv, then

N,'N'. is the transform of .s
',.
s',. l''or

N.S", (Ts,r '(7'.s:.y -) y\ y 'y.s, 7
'

7'< N,N > 7' '.
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EXERCISES

1 . St.itf \\ h;di "t i in' following pairs of operations an- commutative :

i ,i t ran slat ion and a rot at ion about a fixed point ;

i

/. i t uo n 'la! ions ;

i
,

i t \vo 1 1 an.slal i> '!!> :

i otal i' -M and a relied ion on a line.

..'. i; x t.. ;i transformation Midi that >>'
J

1. prove that >'
' -

>', and

,,,;.,,;-..'.,. i i ; \ .

'_;ei iinet rie I'xaiupli'S
< >t t i'a us lormat ions oi tins t v pe.

;;. |'|, ,, ;,.;' [;,',. l

|

.]( .. -al o t t ! If pP M 1 U( 't of t \Vi t la 1 1> fol'll Kit iollS is

al> of the t ran>fonuat ions in inverse order;
'

.

|

lllLlt . /,'> / "

'

'/' '> '/.' '.

-j. I

s i- a rot at ion in a plane and 7' a translation, liml t he trans-

:

x IP\ I ind t he I ranstorin of '/' 1 >\ N.

;,. I'm thai the transform of the inverse of >' is the inverse of the

: of Y

;. h the pro.p.ii-t
"t two transformations i> eommiitat ive. show that

i i'A !: t rallsfi 'I'lll liV t he ' 't hel'.

6. Groups. .1 > / "i' friin!<t'"i'/iiiili"iix /'//// <i
///""/'

/' //" *''t <'"ii>it/i<x

'/,, ,'///, /-.v, t' ,,;/>/ f/-it l ixt'"t'/inlfi"lt "t' tli, .v,7 ilii'l /' tin
jii'mlni-t "t'linil

'r ii -~ i' 14 a ->' '/i' mt /x "/>" it t ril iix>"rni'itin "t' tlif K t -f.

I:: !_T
(- !iera! tlie delinitioii of a

'_;-i'oiip
of dperat ions involves also

i onditii'iis that tin' operations shall In 1 as.soeiat ivr ;ind that the

ideiitieal t ran-fonnat ion shall lie delined. These latter eoiidit ions

- true for <j;
( .,,inetriea! transformations need not lie

: in our iletinit ion nor explicit Iv looked I'm
1

in (k'tt'i'inining

\\hethei- MI not a -_;'!\'e!i set nf transformations form a -^roiip.

\s an example ol a "I'mip consider the operations consist in"" of
i .

i

its in >paee around a tixed axis throii^li anv ang'le

. -1-TT

ar< ind t lie same a\ is.

Ionium.;' a '_:inp and contained in a larger

/'
"t the larger 'jroiip. l-'nr example, the rota-
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group of mechanical motions. All translations in a fixed direction

form a subgroup of the group of translations and hence a sub-

subgroup of the group of motions.

The importance of the concept of groups in geometry lies in tin-

fact that it furnishes a means of classifying different systems of

geometry. The element of the geometry haying been chosen, any

group of transformations may be taken, and the properties of

geometric figures may be studied which are unaltered by all trans-

formations of the group. Thus the ordinary geometry of space

considers the properties of figures which are unaltered by the group
of mechanical movements.

Any property or configuration which is unaltered by the opera-

tions of a group is called an incuriniit of the group. Thus distance

is an invariant of the group of mechanical motions, and a circle is

an invariant with respect to the group of rotations in the plane

of the circle about the center of the circle.

EXERCISES

1. It' ./ is the distance of a point P on a straight line from a fixed

point a, and /' is transformed into a new point /
>( such that x' = .r -f- l>,

prove that the set of transformations formed bv yiving to n and // all

possible values form a i^roup.

2. I f i ./, // 1 are < 'artesian coordinates in a plane, and a trans format ion

is expressed l>v the equations

.<'= j~ cos a
i/
sin a,

'/'= .'' sin ic -|- // cos <t,

prove that the transformations obtained by t;-iviiiL,
r n all possible values

form a ^roup.

3. It' (./, i/} are ('artesian coordinates in a plane, prove that the

transformations defined by the equations

./'= j- cos K -f ij
sin n,

//'
'= ./ sin T //

cos
(t,

do not form a <_rroii]>.

4. Name Mime subgroups of the Croups in Kxs. 1 2.

5. Let f,' be a i;iven L;TOH|> and <! a subgroup. It' every transforina-

tioii of 'r'
t

is re|)laeed bv its transform bv 7'. where T belongs to '/. show



CHAPTER II

RANGES AND PENCILS

7. Cartesian coordinate of a point on a line. Consider all points

\\hich lie on a line A A' (Fig. 1). These points are called a jH-ncil

or a r<i/i//>', and the hue LK is called the </.r/,s or the Ixittf of the

range. Any point /' on LK may 4 o f

lie fixed most simply by means of ^

KM,. 1

its distance of from a fixed origin

o, the distance being reckoned positive or negative according as /'

lies on one side or another of O. We may accordingly place

x=OP (1)

and call .r the coordinate* of -/-". To any point /' corresponds one

and only one real coordinate .r, and to any real j- corresponds

one and only one real point P. Complex values of ./ are said, as

in sj 8, to define imaginary points on LK.

The coordinate may be made homogeneous ($ 4) by using

the ratio ./ : f. where - = Of. As /' recedes indefinitely from O, t

f

approaches the value 0. Hence, as in 4, we make the convention

that the line has one point at infinity with the coordinate 1 : 0.

When the nonhomogeiieons j- of (1) is used, the point at infinity

lias the coordinate s,.

Tlu- coordinate ./ we call the Cartesian coordinate of /'because

ot its familiar use in ('artesian geometry.
8. Projective coordinate of a. point on a line. On the straight

line LK (Fig. 1) assume two fixed points of reference A and /'

and two constants /- and /ro . Then if /' is any point on LK \ve

may take as the coordinate of /' the ratio ./ : ./, where

V^^, -!/':V /;/ '< 0)

The wop! "
riii'iriliiiatc

"
may lie objected tn nil the ground that it implies the

e\ist'-iice ,,|' l( [ 1,-ot twn quantities which an.- cnnnlinatecl in the- usual sense. In

Spite nt thi> nlijei'tinn we retail! the Word tn elnpha>i/.e the fact that We liave hel'e

ti- >iin]ile>! case of coiii'dinates in an u-diliiensioiial tceoinetry.

s
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hi which the distances AT and 7>'/' are positive or negative accord-

ing as /' is on the one side or the other of A or />' respectively.

It is evident that the correspondence between real points on IJ\

and real values of the ratio
j^

:.r
t

is one to one. Complex values

of the ratio define imaginary points on LK ($^).

The Cartesian coordinate of the preceding article may he con-

sidered as a special or limiting case of the kind just given. For it

in (
1 ) \ve place /- 1, allow the point 1> to recede to inlinitv,

and at the same time allow
/".,

to approach zero in such a manner

that the limit of
//.,

/'/' remains finite, equations (1 ) give the

homogeneous Cartesian coordinates of ]'.

Considering (1), we see that as /' recedes indefinitely from .1

and /.' the ratio
./',:./'., approaches the limiting ratio

k^
:

k^.
Hence

we sav that the line has one point at infinity.

It is to le noticed that the ratio (which alone is essential) of

the constants
k^

and /-o is determined by the coordinate of anv one

point. Since this ratio is arbitrary the coordinate of anv point mav

be assumed arbitrarily after the points of reference are fixed.

In particular anv point may be given the coordinate 1 : 1. This

point we shall call the unit
j><>int.

The coordinate of A is <> : 1 and

that of /.' is 1 : 0. Since the unit point and the points of reference

arc arbitrarv, ii follows that tit scttint/ uj>
tltc coordutntc *//*/<//; ti/tj/

flirt f
jio/'/itx ni'ii/ In' i/ti't'/i (I/,- coord iiKiti'H (> : 7, J : O* <tn<l / : /

/v.vy^-c-

tici-l//, it/id t/n' i-oo/'diiKftt" xyxtt'in in fully di'tcnnini'd
/<//

tht'Kt 1 i>oint#.

The coordinate of this section we shall call the projective

mlinate of /' because of its use in projective geometrv.CO

EXERCISES

1. I-'>t;ilili>li ;i coordinate svMrin on a straight line so that tin- (mint /.'

i> ~> iiiclit-s to tin- 1'i^'lit of .1 and tin- unit point 1 inch t o 1 he ri^ht of . I .

\Vhciv is tin- coordinate negative'/

'2. Take the point. /; as in MX. 1 and the unit point 1 inch to the

ri^'lit of /;. \Yhat. are the coordinates of points respect ivel\ 1, L'. .'!,

1 inches to the ri^ht of .! and 1, L', M inches to the left of .1 '.'

9. Change of coordinates. The most general change from one svs-

tcin ot projective coordinates to another mav he made hv changing
the points of reference and tin- unit point, the latter change beiiiii

I I*)
ei jui\ alent to clianu'm^ the ratio of the constants /, and /,,,.

Let
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./ :
./-.,

IK- the coordinate of any point /' (Fig. -) referred to the

points of reference .1 and />. with certain constants
k^

and /r,, and

let J\
'

.'', he the coordinate ot the same

point referred to the points ol re I ere nee ^

A' and /'', with constants k\ and k'.,.

Assume any point
<> and let (>A <i,

o.l' <i'. (Hi f>. oil' I', and ^/' (. Then from (1"), 8, we have

j-
l
:j:,^k

l {t-):k.,(t -/'), -'I
: -<

-

--k((t
-

a'): k',(t -//). (1 )

The elimination of / Iroin these equations <_dves relations of the

form
pj

.

} raX + rtX'

which arc the retjnired toi'mnlas lor the change of coordinates.

'1'he i-atio of the coet'ticiciits n^ a;,, (3^
and /:?, will lie determined

if we know three values of r
t

:
./.,

which correspond to three values

of
.r[

:./'., in particular to the three values 0:1, 1:0, 1 : 1. For

when
./[

: ./',
" : 1 \\ e have j\ : :r.,

= a., : /^.,; when ./,'
: ./.' = 1:0 we have

./,
: ./ -- n

,

:
/:?,

: and when
./(

: .r', --1 : 1 we have
.r,

: .r. ,

=
rr, + a'., :

/rf, + /^.,.

It is obvious from the foregoing that if the reference points A

and '//are distinct, the coefficients in (I?) must satisfvthe condition

n /^--a.,^?
-- 0, which is also necessarv in order that the ratio ./' :./,

in e(|iiations ('!) should contain ./,:./.',.

lOipiations ( '1 ) niav lie placed in a form whieli is of frequent use.

Let ns place ,'-J
: .r', \,

n^
=

2^ /^
]

=
,r,, n ,= //^ /3.,= //.,.

\\'here
//

(

:
//.,

and ,:- : ,?, are the coordinates ot the two points corresponding to

A. : and X s. respectively. Then equations (-) liccome

Ilciicc, /'/' // :
//o

<nnl ,r : ,r, nrr f/n' <-nf!i'iTiunit's of any f/m
piiintu <>n

(i
xtrn'ujlit Inn', f/n- fix'SrtJinrttt' <>f <<ni/ <>tlnT />///f tun// In- U'rittrn

;i *.-',; //., f X.?.,.

EXERCISES

1 . I-'ind t he formulas for t he change from the coordinate in Kx. 1 , > S,

to that in I''.\. L'.

'.:!. l''md the |ormula-< fur a change from the coi'u'dinate in I'lx. 1, * S.

''> Olie in \vllich tin- ri'l'i'Trlii-e jiollits a I'e
1'eS]

icet 1 \"e! \' L' ami t) inches

I'l'oin .1 ami the unit point 1 units from . I .

.'' . l'v<''.e that all changes ot coord inatfs foi
-m a L;TOU)P.
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10. Coordinate of a line of a pencil. Consider all straight lines

which lie in a plane and pass through the same point (Fig. ''>).

Such lines form a jH-m-i/, the common point being called the ?>'//./

of the pencil.

Let <>M be a fixed line in the pencil. <>/' any line, and the angle

Mnl'. Then it would be possible to take as t he coordinate of <>l\

but in that case the line <)/' would ,

have an infinite number of coordi-

nates differing by multiples of '1 IT.

We may make the relation between

a line and its coordinate one to one

by taking as the coordinate a quan-

tity JC detined by the equation

//") /- -| N

tan0, (1)

where k is an arbitrary constant.

Then ./--I) is the line ".)/, ,/ = -/-_ is

the line at right angles to O.17, and

any positive or negative real value of ./ corresponds to one and

only one real line of the pencil, and conversely. Imaginary values

of ./ define imaginary lines of the pencil as in
Jj

3.

A more general coordinate may lie obtained by usin^ two lixed

lines of reference <>A and nil and defining the ratio ./ :./., by the

equation .,-
.

,-
it

= /{ sin JO/ J
:

.,
sin //o/'. c2)

Equation ('2) reduces to equation ( 1 ) when the an^le Anil is a

ri'_dit angle, n_\ coincides with <>M, and ./ :./.,
- r.

In general let the angle M<>. \ .... n and the angle .]ft >/; -=
rf. Then

(.! ) may be writ ten

s:j\ t
=/r sin (

-- n ) :
/'.,

sin (

- $ )

= /-(./ cos /{
- / sin '():/'(.' cos /^

-
/,' sin /3\ (

:>>
)

1 '2

\\'hen .r is defined liy ( 1 ).

Now let
./-|

: ./.',
be another coi'irdinate of the lines of the pencil of

the same form as in equation ('2). but referred to lines of reference

< >A' and nil' and with constants l,-'
{

and /'. Then ./ ,' :

./^
is connected

with ./ : ./ by a bilinear relation of the form
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This follows from the fact that both
.r,

: .r, and
,r[

: j\, are con-

nected \\ith ./ bv a relation of the torm ('*>).

Since a transformation of coordinates is effected either by change

of the lines of reference or bv change ot the constants /" ami /-o , it

follows that anv transformation ot coordinates is expressed by a

relation of form ( 4~). The coefficients of the transformation are

determined when the values ot
J\: J\, are known which correspond

to three \alues of ./
[

: r.,. The proof is as in
sj 1'. Also, as in >j '.*, it

mav be shown that if
//,://

mid ^ :
.?, are the coordinates of anv

two lines of a pencil, the coordinate of any line may be written

11. Coordinate of a plane of a pencil. Consider all planes which

pass through the same straight line (Fig. 4). Such planes form a

}i,i,'-il
or xln-iif, and the straight line is called the n.n'x of the pencil.

The coordinate of a plane of the sheaf mav be

obtained bv first assuming two planes of refer-

ence it and / and a fixed constant k. Then, if
j>

is any plane of the pencil and (>/, j>~)
means the

angle between </ and
/>,

we mav define the coordi-

nate of
y>

as the rat io ./: .r given bv tht 1

equations

'",
:

''.,
: k sni ( ''- )> )

'

/".,
s in ( ^.

}> ) ( 1 )

It is obvious that if a plane /// be passed per-

pendicular to the axis of the pencil, the planes of

the pencil cut out a pencil of lines in the plane m.

The angle between two lines of this pencil is the

plane angle ot the two planes in which the two lines he. Hence

the coordinate
.'',:.''.,

defined in (1) is also the coordinate of the

lines of the pencil in the plane />/, in the sense of ^ 10. The results

ot ;j 10 with retereiice to transformation of coordinates hold, there-

fore, for a pencil of planes. In particular, if
//,://.,

and
z^.z,,

are

the coordinates ot anv two planes of a sheaf, the' coordinate of anv

plane ' 'f t he pencil mav be writ ten

Fit;. 1

p.'- //, + X.?.,.
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PROJECTIVITY

12. The linear transformation. We shall now consider the

substitution

('*!#,
<r

,/tfj ) ( 1
)

pj'..
=

't,./-
, -fpV,

not as a change of coordinates, as in ij '.', but as defining a trans-

formation in the sense of ^ >. Then
.i\:.r,

are to be interpreted as

the coordinate of an element of a one-dimensional extent and

.>,':./.'
as the coordinate of the transformed element of the same or

another one-dimensional extent. If J\1J'., and
.r|

: ./' refer to dif-

ferent extents, the elements need not be of the same kind. For

example, the transformation (1) may express the transformation

of points into lines, of points into planes, of lines into planes, and

so on.

To study the transformation we, shall lind it convenient to use

a nonhomogeneous form obtained bv replacing .r,
: .r, by X. .i'[:j'^

by X', and (.'hanging the form of the constants. We have

\' - . (n& rfy
'--

) (

-

2)

Here X and X' may be the point, line, or plane coordinates of

^ 7, H, 10, 11 or may be the X used in the formulas of ^ t> 1 1.

More generally still, X may be any quantity which can he used

to define an element of any kind, even though not vet employed
in this text.

In each case the clement with coordinate X is said to be trans-

formed into the element with coordinate X'. and the two elements

X and X' are said to correspond. There is one and only one element

X' corresponding to an element X. Conversely, from (-) \\ c obtain

X =
' X

,

'

(
:'.

)

i:;
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Hence to an element X' corresponds one and only one element X.

In other words, the correspondence between the elements X and the

Any clement whose coordinate is unchanged by the trans-

formation is called a fired element of the transformation. This

definition has its chief significance when the elements X and X' are

points of the same range, or lines of the same pencil, or planes

of the same pencil. If, for example, X and X' are points of the

same range, the point X is transformed into the point X', which

is in general a different point from X, but the fixed points are

unchanged.

To find the fixed elements we have to put X X' in (2) or in (3).

There results

7 X'
J + (8

- a
) X - /3 = 0. (4)

Any linear transformation has, accordingly, twofijred elements, which

may f>e distinct ,\r coincident.

If ', /3, 7, and 6 are real numbers, and real coordinates X and X'

correspond to real elements, we may make the following classifica-

tion of the linear transformations:

( 1 ) (
8 a)

2
-f- 4 fiy > 0. The fixed elements are real and distinct.

The transformation is called hyperbolic.

('2) (8 a
)

2
-f 4 $7 < 0. The iixed elements are imaginary with

conjugate imaginary coordinates. The transformation is called

elliptic.

( -\
) ( 6 a )+ 4 #7 = 0. The fixed points are real and coincident.

The transformation is called parabolic.

P>\ the transformation (2) an element /' with coordinate X is

transformed into an element <
t

> with the coordinate X'. At the

same time the element (
(

> is transformed into an element l> with

coordinate X". In general, I! is distinct from /', for X" is given

by the equation

X" --
( ">

)

In order that X" should always be the same as X it is necessary

and sufficient that the e<|iiat ion
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should be true for all values of X. The coeilicients a, $, 7, and 6

must then satisfy the equations

iiy + 78 = 0,

The second equation gives 6 = a. If \ve take 8 a the other

two equations give 7 = <*, /^= 0, and the transformution ( 1
) reduces

to the identical transformation \=\'. We must therefore take

8 = rr, and all three equations (t!) are satisfied.

The transformation then hecomes

0) (7)
7 A. ft

A linear transformation of this type is called hn-ohifori/. It has

the property that if repeated once it produces the identical trans-

formation. The correspondence between the elements X and the

transformed elements X' is called an invAutiun.

EXERCISES

1. Find the transformation which transforms 0. 1. x into 1, x. 0,

respectively. AYhat. are the fixed points of the transformation '.'

2. If ./ is the Cartesian coordinate of a point on a straight line,

determine the linear transformation which interchanges the origin and

the point at infinity. What are the fixed points of the transformation '.'

I >o all such transformations form a group'.'

3. If jr is the Cartesian coordinate of a point on a straight line,

determine the transformation which has only the origin for a fixed

point and also that which has onlv the point at inlinitv for a fixed

point. Does each of these tvpes of transformation form a group'.'

4. 1 f x is the Cartesian coordinate of a point on a straight line,

determine a transformation with the fixed points 4- I. Po these form

a group ?

5. Show that the general linear transformation mav he oht

the product of two transformations of the type X' = "A. tw

type X' = X -f- />, and one of the tvpe X' = -
A

6. Show that anv transformation with two distinct fixed elements

X' " X - '/

" and It can he written - - = I;

X b X - h
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7. Slm\v that any transformation \vitli a single fixed element a

can he writ ten 4- /'

A " A "

8. Show that anv involutorv transformation can he written

where " and l> are the fixed elements.
A' / A - I'

it. Shiiw that all transformations with the same fixed elements

form a u
r

roup.

10. < 'on>ider the set of circles which pass through the same two

tixed poinN. and the common diameter of the circles. ShoW that if /'

and i.> an- the two points in which any one of the circles meets the

common diameter, /' mav lie transformed into <> bv an involutory

transformation, the form of which is the same for all points /'. Show
that the transformation is elliptic, or hyperbolic according as the two

fixed points in which the circles intersect are real or imaginary.

11. Show, conversely to Kx. 10, that any involutory transformation

mav he geometrically constructed as there descrihed.

13. The cross ratio. Tlie linear transformation contains three

constants: namely, tin' ratios of the four coefficients a. tf, 7. and 8.

These constants can he so determined that anv three arbitrarily

assumed values of A can he made to correspond to anv three arbi-

trarilv assumed values of A'. In other words,

7. /'// it liiifiir trcinxfurination anif tJirff rloncnfn <<'// f>i- trnnitfnnncff

'nit" iini/ nf/i,'/' tfn'i'i' t'li'/iu'ittx, ft n<f tJifxi' t/irt'f
!>///)!<

i

>f I'orrfKpnnilinfj

> li-nii'iit* <it'f soitfif'it'nt t" ft.r flic trnnfrinnt\<in.

'I'n \\rite the transformation in terms of the coordinates of three

pairs of corresponding elements, we write first

A' \, A - A,
,

'(
-

( 1 )

A -
A; A A,

\\'hicli i< obvioii>l\- a transformation bv which A
(

is transformed

into A,', and A,, into A',. If. in addition. A, is to be transformed into

A . '( must be determined bv the eipiatlon

A.' .

- A' A, A,
;

= ^ ' S- cl)
A .

- A . A., A.

Kr mi (1 ) and ( '1 ) we ha ve

\' A: A; A; A - \ n
_ A,- A,

A' \[

'

\' A; \ -

A,

'

A. A.,

which i> tlic rciiircil transtormatioii.
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If X iuid Xj are a fourth pair of corresponding elements, we have,

from (o), x;
-

x; x
:;-x; x

4 -x, x,-x,
A, A.. A., A,, A,

'~ A, A , A.,

or, with a slight rearrangement,

X. A, A, - A, X, X, X, X.
~_ i > _ ^ f i \

X X X
, X. X X X X

X,- X
(

X.,
- X,

is called the r/v/.s-x ratio, or the iiiilniDiinitfc ratio, of the four ele-

ments X
(

, X,. X.
(

, X
(

, and is denoted by the symbol (\\ t
. X^).

Kquation (4) establishes the theorem:

II. Tin 1

t't'oxx ratio (if fniir clt'tticnta ix u/ia/fi'm/ hi/ a//// lun-ar

t ra iixiorniat inn.

The cross ratio is accordingly independent of the coordinate

system used in defining the elements.

The cross ratio depends not only on the four elements involved

but also on the order in which they are taken. Now four things

maybe taken in twenty-four different orders, but there result only

six distinct cross ratios. In fact, it is easy to show, by writing all

possible cross ratios, that the six distinct ones are

1 1 /-I
/, 1 /, i

/ 1 III 1

where / is any one of t hem.

In naming the cross ratio of four elements it is therefore neces-

sary to indicate the order in which the elements are to be taken.

\Ve have adopted the convention that if /', /!. /', and /[ are four

elements with the coordinates X^ X,, X.. and X
( respectively, the

cross ratio indicated by the symbol (/'/',. /'/,') shall be <_nven by

the relation
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A special form which the cross ratio takes for certain coordinates

is of importance and is given in the following theorem:

///. If tin- i-lfim-ntx /' a ml <
t

> h<n->' tin' foordinatt'x i/
{

:
//

<tn<1 ^ : zn >v-

nih'i-ffr, ///, ,1ml tin- >l> //n -ntft A'-///'/ X /t/iri- the coordinates // 4- X^ :
//., 4- \z

itihl >/ 4- fj..:
:

//., 4- H- , /vx/'fv//>r/ty, tln'n

( /'<,>. /,'.s' )- (
A' A', /'(,>)

= -'

To prove this take X =" for the element /', X,= o; for the

element (
t >,

\ -X for the element //, and X^= ^ for the element

N, and substitute in (
<i ).

If X is the Cartesian coordinate of a point on a straight line,

then Xj X
3
= /'/'. X, X

4
= /

4'/,', X_, X.,
= !'.!',, X., X

4
= /

4 A_f,
and

/I>/-''
7
^ /4>

The cross ratio is accordingly found l>v finding the ratio of the

segments into which the line I'./j is divideil li\- /,' and the ratio of

t he segments into which A'/,' is divided l>v /,', and forming the ratio

of these ratios.

14. Harmonic sets. If a cross ratio is equal to 1, it is called

a harmonic /<///</. It /', /',, /', and l\ are four elements such that

(/;/.;, //;>= ~1,

the four elements form a harmonic set, and the points 7J and P,

are said to he harmonic conjugates to A| and /
4
'.

From III, ^ 1 o, it follows that the points //
)

4- X,^
:

//., 4- X^, and

//,

-

X^://,
-

X,r, are harmonic conjugates to
//,://.,

mid z : zn .

I-'rom (7),^ 1 >, it follows that if four points on a straight

line toriu a harmonic set, then

'I his shows that the two points in a harmonic set divide the dis-

tance between their harmonic conjugates internally and externallv

in the same rat n >.
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EXERCISES

1. Show that tlir cross ratio of any point, the transformed point,

and the two tixed points ot anv elliptic or hyperbolic transformation

is constant. This is sometimes called the rhui'artm-ixt'ii' OV/NS ,-ntln of

the transformation. What happens to the characteristic cross ratio as

the two tixed points approach coincidence '.'

2. Show that, \\\ any involutory transformation anv element is

transformed into its harmonic conjugate wiih respect to the two fixed

elements.

3. If A
I? A.,, A

(
,
A

(

form a harmonic set. prove that

1' 1 1

In general, prove that if
lAjA.,, A.

(Aj = //,

1 - /.- 1

_/,-_

\-\\-X \-\
4. \\'rite the transformation l>y which each ]ioint on a line is trans-

formed into its harmonic conjugate with respect to the points A= ",

A = ". What are the tixed points of the transformation ".

5. Prove that an involution of lines of a pencil contains one and

onlv one pair id' perpendicular lines (that is, one case in which a line

is perpendicular to its transformed line) unless all pairs of lines are

perpendicular. When does the latter case occur'.'

(3. Let ,''
t

: .' lie the coordinate of a point on a line and consider the

point pair defined by the equation

wj'" + - ".''' + "'' = 0.

7. Let A and /.' be two distinct points defined bv the equation of

Kx. l>, ami /' (i/ : //., ) and (j ( : : ::
,

) and I! (tr ; n\, ) any t hree points. If

the
jn'ujt'ctlrt' tlittfiun'f between two points is defined bv the equation

( 'onsider t \\'i i cases :

1. .1 and /.' real. Take /.- real. Then any two points between .1 and

l> ha\'e a real distance apart. I and /.' are at an infinite distance liom

an\ other point. An\ point not between I and /.' is at an imaginary
distance from an\ point l>et \\een I ami /.'.
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L'. .1 ami /.' conjugate imaginary. Take I; pure imaginary. Any two

ival jtuiiits arc at a ival liiutt- distance apart. The total length of the

line i> tinite.

8. ('(insider the point pair detined by the equation

"n-''i" + - "i--'Y''j -f "-.'; = 0.

1'heii, if
//j :.'/.,

is any given point, the equation

defines a point \vldeh is called the j/n/nr /mi/tt of // with respect to

the point pair. Assuming <t r/'.,._, cfj
: -'-

0, show that to any ]>oint cor-

responds a definite polar point and that any point is the polar point

of a definite point //. Show that a point and its polar are harmonic

conjugates with respect to the point pair. What happens to these

theorems if " n ".^.. "f. '.'

15. Projection. Two Diu'-dhnensioiial extents are said to lie in

proji'i-tinn if the elements of the two extents are brought into

correspondence by means of a linear relation,

between their ci litrdiiiates. The correspi unleiice is called a
i>i''>/cc-

tii'iti/. It the correspundence is inyolutory, the proji'ctivitv is an

in\'olutit)ii f^ll'). I-'roin the definition the following theorems

may be immediately deduced :

II. /'//'" 'iiii'-il I iiti'iixtoii/il r.rfriifn itnlif In' /'/"lli/J/f iiit'i
l>r"i>'i'f

l"H K'ltJl

i '/</! otJtt'f til aiii'li it //'it// tlnlt n/i/l ttn'i-i' >-lt'iiti'ittx nt' n/ii' i<r>' //nlifi' fu

<'nri't'xp<iiid
t" iinif tln'i-i' iti'nii tit* i,t' //t,

1 nf /n'/\

III. A
(if'i'ii'ffirfti/

/.s full if il< ti ruti lli'il In/ f/i/'i'/' y"//Vx
"/'

I'li/'ft'ttiiittlifi'tli/

, /, ,//,,/ f,:

IV. Tit'n i.rtiiit* /////,-// I//-,- in ii/-,i/i'i'/ tu/t tt'lt/i flu' ft tin' tin /'d r.rtiiit

il/'f III
[ll'i'l

li'tlo/l l/'tf/l 1'ili'JI n/l/i/-.

EXERCISE
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\

16. Perspective figures. A simple case of a projeetiyity is that

called a perspectivity, now to he ill-lined. Noting that we have to

do with pencils of different kinds,

according as they are made up
of points, lines, or planes, we

say that two pencils of different

kinds are in
y/iv,sy/c<'///'.'

when

they are made to correspond in

such a manner that each element

of one pencil lies in the corre-

sponding element of the other.

Two pencils of the same kind

are in y^r.sy<v///v when each is

in perspective to the same pencil of another kind. The corre-

spondence hetween perspective figures is called a prrxpt'cticity.

\ pencil of points and one of lines are therefore in perspective

when they lie as in Fig. 5, where the lines </, /-, f, </, etc. correspond

to the points A, /.', (\ I>, etc. To sec that we are justified in calling

this relation a projeetiyity. note that

AI> a. I sin AOD _
j;i>~ oil sin H0l>

Hence, if A and />' are taken as fixed points and J> as any point,

the variable A. is a coordinate at the same time of the points of the

pencil of points and of the lines

of the pencil of lines. Since any

change of coordinate of either of

the pencils is expressed by a

linear relation, the two pencils

satisfy the. definition of projec-

tive figures.

Two pencils (' ranges )
of point s

are in persped ive when t hev are

perspective to the same pencil

of lines as in Fig. li. The st rai'_dit

lines connecting corresponding

Y
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Two pencils of lines are in perspective when they are in per-

spective to the same range of points as in Fig. 7. The points

of intersection of corresponding ,

lines of the two pencils then lie

on the.same straight line. 'I hat

the relation is a projectivity

follows from I V, ^ 1 >.

From these detinitions the

following theorems are easily

proved :

7. If four lines <f a pencil <>f

linis are cut /<// ani/ transversal,

the cross ratio of thefour points of

intersection is independent of the

position of (he transversal and is e>p<al to the cross ratio of thefour lines.

II. Iffour points of <t rani/e are connected icltJi ani/ center, the cross

ratio of t fie four connecting lines is Independent of the position <f the

center and Is eipial to the cross ratio of the four points of the ran</e.

III. It the straight lines connecting three pairs of corresponding points

at tn'o profeet i ee rani/es meet in a point, all the lines conncctine/ corre-

xpo/idin;/ points meet In that point, and the ranges are in perspective.

IV. It the points oj intersection oj tliree pairs of correspond iii<i lines

ot' f/i'/i project tec pencils lie on a straight line, the points of intersection

of nil pairs of corresponding lines lie on that line, and the pencils are

in persj,ec(i,<e.

The last \\\o theorems follow from III, vj 15.

A pencil of lines is in perspective to a pencil of planes when the

vertex of the pencil of lines lies in the axis of the pencil of planes

and each line corresponds to the plane in which it lies. It the plane
ot the pencil of lines is perpendicular to the axis of the pencil of

planes, the correspondence is a projectivity, since, hv ^ 1 1, the same

coordinate mav he used for each pencil. If the plane of the pencil

nt lines is not perpendicular to the axis of the pencil of planes, the

peneil ot lines is clearlv in perspective to another pencil ot lines

with its plum- so perpendicular, for in Fig. 7 the two pencils are

not necessarily in the same plane. Hence the relation here is also

a projeetU it V.
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EXERCISES

1. Consider ;inv two project ivo pencils of lines not in perspective

and construct the locus of the intersections of corresponding lines.

Show that this locus passes through the vertices of the two pencils and

that it is intersected liv an arbitrary line in not more than two points.

2. Consider anv two pencils of points not in perspective and con-

struct the lines joining corresponding points. These lines envelop a

curve. Show that not more than two of these lines pass through anv

arbitrary point and that the two liases of the pencils belong to these lines.

3. Consider the locus of the lines of intersection of corresponding

planes of two pencils of planes not in perspective. Show that this locus

contains the two axes of the pencils and that it, is cut bv anv arbitrary

plane in a curve such as is defined in Kx. 1.

4. Show that if the line connecting the vertices of two protective

pencils of lines is self-corresponding (that is, considered as belonging
to one pencil it corresponds to itself considered as belonging to the

other pencil) the pencils are in perspective.

5. Show that if the point of intersection of the bases of two project! ve

ranges is self-corresponding (see Kx. 4) the ranges are in perspective.

6. (liven anv two protective ranges of points. Connect anv pair of

corresponding points and take anv two points <> and <>' on the connect-

ing line. With <> as a center construct a pencil of lines in perspective
with the lirst range, and with (>' as a center construct a pencil of lines

in perspective with the second range. Prove bv use of Kx. 4 that the

two pencils are in perspective. Hence show how corresponding points

of two ranges can be found if three pairs of corresponding points art-

known or assumed.

7. Ciiveii two project ive pencils of lines. Take the point of inter-

section of two corresponding lines and through it draw any two lines

a and </. <>n n construct a range of points in perspective to the first

pencil ot lines and on '/' construct, a rair_,
re of points in perspective to

the second pencil of lines. Prove bv use of Kx. T) that the two ranges

are in perspective. Hence show how corresponding lines of two pn>-

jective pencils can be found if three pairs of corresponding lines are

k nown or assumed.

17. Other one-dimensional extents. \Vc have taken as an example
ot a oiic-ilinieiisioiial extent of points the nui"v, or pencil, consist-

i .^i
ingot all the points on a straight line. It is nhvions, however, that

th;s i< nut the niilv example of a one-dimensional extent of [mints.
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In fact, unv curve. whether in the plane or in space, is a oue-

dimensional extent, the coordinate oi an element of which may he

iletincil in a variety ot ways. ( )ne ol the simplest methods is to

lake the length it the eim e ineiisuix'd from a tixed point to u vari-

able point as the coordinate ot the latter point, 1ml other methods

will su-_^e>t themselves to the reader familiar with the parametric

representation of curves. In the case of a circle, for example, we

mav construct a pencil of lines with its vertex on the circle, take

as the initial line of the coordinate svstem the tangent line to the

circle through the vertex ot the pencil, and then take as the coordi-

nate of a point on the circle the coordinate of the line of the pencil

\\liich passes through that point.

Similarly, the tangent, lines to a plane or space curve form an

example of a one-dimensional extent of lines. Also the tangent

planes to a cone or a cylinder or the osculating planes to a space

curve are examples ot a one-dimensional extent ot planes. '1 hese

extents, both of lines and planes, will be discussed later.

Moreover, it is not necessary that we confine ourselves to points,

lines, and planes as elements. We may, for example, take the

circle in a plane as the element, of a plane <_;vomctrv. In that case

all the circles which pass through the same two points form a one-

dimensional extent, a pencil of circles. Another example of a one-

dimensional extent ol circles consists of all circles whose centers lie

on a tixed curve and whose radii are uniquely determined bv the

positions of their centers.

In like manner the sphere mav be taken as the element ot a

>pace geometry. All the spheres which intersect in a tixed circle

torm then a one-dimensional extent of spheres, a pencil of spheres,

and other examples arc ivadilv thought of.

In all these cases, when the coordinate X of the element of the

extent is tixed, the discussion of the previous sections applies.

< >ne more remark is important. In all cases we have allowed X

to take complex values. That is. X is a number of the tvpc

where / \ 1. 1 he variable X mav accordingly be interpreted m
the u.-ua! manner on the complex plane. The significance ot the

linear transformation mav then be studied from the standpoint of
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the theorv of functions of it complex variable. This lies completelv

outside ot tlie ran^e ol this hook.

We notice, however, that in interpreting X as the coordinate

of a point on a straight line we have a one-dimensional extent of

complex values, while in interpreting it as a complex point on a

plane we have a two-dimensional extent of real values. That is,

tin- Jinn nsi'it* "f (in f.i ft /it :rill depend i/]>/t H'Jti'tJii'r it /.s cuunt>-d in

ttTntx "/ f"//ij'li-.r ijuutttiti'fti
"/ i-f /><!/

<jt<<titt
tttfx. \ suallv we >hall

in this hook count dimensions in terms ui' quantities each of which

mav take complex values.

Consider the complex quantity

t being a real quantity and tlu- functions i'eal functions.

Then as / varies, the point X traces out a curve on the complex

plane which is one-dimensional. If X is interpreted as the coordi-

nate of a point on a straight line, then equations (-) define a one-

dimensional extent of points on the straight line, which do not of

course contain all the points of the line. Such a one-dimensional

extent of points is called a f/t/'f<!'l of the line. Examples are the

thread of real points ( \.,
(| ), the thread of pure imaginary points

(X^-0), tin.- thread of points X^ 1 +i) the square of whose

coordinates is pure imaginary, and others which can be formed

at pleasure.
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CHAPTER IV

POINT AND LINE COORDINATES IN A PLANE

18. Homogeneous Cartesian point coordinates. Let < L\' and ()Y

be two axes of coordinates, which we take for convenience as rec-

tangular. Then, if /' is anv point and /'.)/ is drawn perpendicular

to <>.\\ meeting it at M, the distances ( >M and .)//', with the usual

conventions as to signs, are the well-known ('artesian coordinates

of /'. To make the coordinates homogeneous we place

"-"-v '"'=?
"'

Then to anv point /' corresponds a definite pair of ratios ./: // : /.

( 'onversel v. to anv real pair of rat ios ./ ://:', in whicli / is not equal

to /.ero, corresponds a real point. In order that a point mav cor-

respond to any pair of ratios we need to make the following

definitions, in harmony with the general conventions of ^ -\ and -1 :

(
1 ) The ratios 0:0; shall not be allowable, for they make both

<>M and Ml' indeterminate, and the point /' cannot be lixed.

('!) ( 'omplex ratios shall be said to represent an imaginary

point ( ^
; > ).

( )
)
A set of ratios in which f = shall be said to represent a

point at infinity (sj I). In fact, it is obvious that as / approaches

/.ero. /' recedes indefinitely from ", ami conversely. In particular,

t he point 0:1:0 is t he point at in tin it v on t he line < > Y ( ^ 7 ). t he

point 1:0:0 is the point at infinity on t he line "-\ . and >/:/: i>

19. The straight line. It is a fundamental proposition in analytic

ei nuet rv t hat an \ linear eiiat ion
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coordinates satisfy an equation of the form (1 ), in which the coetli-

cit'iits ure all real and A and /' are not both x.ero. For proof of the

theorem we refer to any textbook on analytic geometry.

The proposition is a definition as far as it refers to imaginary

points, to equations with complex coefficients, or to the equation

/--('. In this sense "straight line" means simply the totality of

pairs of ratios ./://:/ which satisfy equation (
1 ).

In particular, the equation f --= is satisfied by all points at

infinity. Hence (ill point* t hiftniti/ fit- n>i a nfnn';//if fine, ailli'il

!//> /hif' t hi fin it i/.

It one or more of the coefficients of ( 1 ) are complex the straight

line is said to be imaginary. It is interesting to note that <ni hn<t<j-

inun/ straifiht tint' JIKX i>ne <nitf (>!>/ ">' rail point. To proye this

let us place in (1 )

Then (1) is satisfied by real yalues of .r, i/,
and / when and only

when .

a .r + 'i
>/ + < f = 0,

i \J i

"'' + f
'J/ + ''..'

== "

These (Mjuations have one and only one solution for the ratios

j--.i/:t, and the theorem is proved. Of course the real point may
be at infinity.

Consider now any two straight lines, real or imaginary, with the

e(l" ati"" S V + /,v/ + r, = 0.

.f.,r + //.;/ + <'J = 0.

These equations have the unique solution

which represents the common point of the two lines. This point is

at infinity when
.!,/>'.,

-.!# = 0, in which case, as is shown in any

textbook on analytic geometry, the lines, if real, are parallel. If

the lines are imaginary they will be called parallel by definition.

\\ e mav say
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If (.r
ri

, //n )
is a lixt-d point on the line (1 ), we have

A(.r- .r
if
) + i;(n

~ nj- D: ( i>
)

II // _ - '

Whether J and />' he real or complex quantities, there exists a

real or imaginary anjjde B such that

tan 0= -4-
Then, from equation ( L! ).

P>\ placing these equal ratios equal to > we have, as another

method of representing a straight line analytically, the equations

3' ./ -f- / cos 0,

//
= 11 -(- / sin 0.

These are the parametric equations of the straight line. In them

./
(i

, y . and are constants and / a variable parameter to each value

of which corresponds one and only one point on the line, and con-

versely. It the quantities involved are all real, the relation between

them is easily represented bv a figure. In all cases

and is defined as the distance between the points (.r. >/') and (.rn ,
_// i

).

This work breaks down onlv when . I" -f- />'" = <>. In that case

either .{=/ =
(), and the line (1 ) is the line at infinity, or equa-

tion ( 1 ) takes the form
J' "/ + ''= - <">)

I lere we mav si ill place
tan /,

l)i it sin B ,i>id cos become infinite and equations ( -\
) are impossible.

In fact, equal ion ( '2
)
becomes

and

This shows that the distance between anv two points on the

imaginary lines (.>) must be taken as /ero. For that reason thev

are called mint nni in fi/ifx. 'I'hev pla\' a unique and verv important

part in the ^eonu'trv of the plane.
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EXERCISES

1. Trove that through every imaginary point goes one and only one

real line.

'2. Trove that if a real straight line contains an imaginary point it

contains also the con jugate imaginary point (that is, the point whose

coordinates are conjugate imaginary to those of the first point).

3. Trove that if a real point lies on an imaginary line it lies also on

the conjugate imaginary line (that is, the line whose eoctlieients are

conjugate imaginary to those of the first,
line).

4. If the usual formula for the angle between two lines is extended

to imaginary lines, show that the angle between a minimum line and

another line is infinite and that, the angle between two minimum lines

is indeterminate.

5. (liven a pencil of lines with its yertex at the origin. Trove

that if the pencil is projected on itself by rotating each line through

a constant angle, the fixed points of the projection are the minimum
lines.

6. Show that a parametric form of the equations of a minimum line is

,r = .r. 4- /,

.'/
=

/',,
''<

where f is a parameter, not a length.

20. The circle points at infinity. The circle is defined analyti-

cally by the equation

a ( .r + >r) 4- 2/./V 4- -
.<///>

4- </" = 0, ( 1
)

the form to which equation (4). ^ 1'.', reduces when .r.,
_>/n

, and r

are constants and ( .r, // ) are replaced by .r ://:/.

If '/ - 0, the circle evidently meets the line at infinity in the

two points !:/:<> and 1: /:<>, no matter what the values of

the coefficients in its equation. These two points are called the

//</'
i>niiitx

at
infinity. If // = in ( 1 ), the circle contains the

entire line at infinity and, in particular, the circle points. Hence

we may say that <>// //-, /,*
//(/.v.v //*/////// //// hrn <-!r<-l<' /'</it*

'it in tin it i/.

I he circle points 1 : t / : arc said to be at infinity because they

satisfv the equation / <>. Their distance from the center of the
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circle is not, however, infinite. The distance between two points

with the nonhomogeneous coordinates (y, >/) and (./-, // j
is

= V / - r
o

)- .//- .'/ )-,

which can he written in homoeneous coordinates as

and this becomes indeterminate when .r :
//

: t is replaced 1>\ 1 :
_t_-

/ : 0.

This perhaps makes it easier to understand the statement that

these points lit
1 on all circles.

If ./ :
//M

: t
>t

is the center of the circle and r its radius, e<j nation ( 1
)

can be written (compare equation (-))

(.rt fl

-
./-,/ )- 4- (y -

y t)--r-tit-
= o.

When r= this e<jnation becomes

(j-tn
-

j\t r + ( y -
//,/ r= o, c

;',
>

the locus of which mav be dt'seribed as a circle with center (.r. v, )

and radius zero. When the center is a real point the ciivle (o)

contains no other real point and is accordingly often called a pnint

<//</!'. A point circle, however, contains other imaginary points.

In fact, equation ('}) may be written as

[(.//.- j-j ) 4- i(>/f //,/ )] [( '',,- j;f )
-

i( //'- // / )]
= 0,

which is cfjnivulent to the two linear equations

t ('+ /'/) (', + /'/ )/ = ,

each of which is satistied bv one of the circle points at infmitv.

Hence we have the result that >/ }>tnt <//,/, 1',,/is/xtx >>t' ///, in-,,

imni/iunrif xfrti/'i//tf /i/if* <1r<tirn fr<n tin* renter
/_/'

//> <//-/,' /-, ///, ///,,

cifi'fi' V"iiifn iif inliiiiti/.

The distance from the point (./,//) to anv point on either of

the t\\'o lines just described is y.ero, l>v virtue of etjiiation ('*>).

There are therefore the minimum lines of >j 1 '.'. as is al>o directly

visible from ecjuations ( t ). ll is olivious that through an\" point

tit the plane L^O two minimum lines, one to each ot the cin-le points

at intinitv.
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EXERCISES

1. Show that an imaginary circle may contain either no real point,

one real point, or two real points.

'2. Consider the pencil of circles composed of all circles through two

fixed points. Show that the pencil contains two point, circles and one

circle consisting of a Mraight line and the line at intiuitv. Show also

that tin 1

point circles have real centers when the fixed points of the

pencil of circles are conjugate imaginary, and that the point circles

have imaginary centers when the ti.xed points are real.

3. If a pencil of circles consists of circles through a fixed point and

tangent at that point to a tixed line, "where are the point circles and

t he st might line of t he pencil '.'

21. The conic. An ('((nation of the second decree,

</.>-+ '2 Lri/ + /,//-+ 2f.rf + -2 </i/t + <-'('= 0, (
1 )

represents a locus, called a i'<>)ii<; which is intersected l>v a general

straight line in two points. For the simultaneous solution of the

('((nation ( 1
)
and the ('((nation

A.r + liil + <'t . i> (-J)

consists of two sets of ratios except tor particular values of .1, /',

and ('.

Let toe ('((nation (1 ) be written in the nonhomogeneous form

bv placing / 1, and let ( '2
) be written in the form (^19)

.r = .? + r ci >s 0, if
=

ij
(t
-f- r sin 0.

('-\ )

The values of / which correspond to the points of intersection

of the straight line ('!) with the curve (1) will be found by sub-

stituting in ( 1
) the values of .r and

// j^ivcn by (
:>> ). There results

Lr+ 2 .!// + .V- 0, (^4)

where .17 = (".'+ /'//,,+.O r(ls ^ + ^"',,+ ^/,,4-//)sin ^.

This \\ ill be /.en* for all values of when .r
<t

and
// satisfy the,

equations 'W
n+ 7///u+/= 0, //./;,

4- /'.'/ + //=0. (.">)

In tin- case the point (./;.//) will be called the I'^nicr of the

curve, since anv line through it meets the cniA'c in two points

ijuallv distant from it and on opposite sides ot it. Now c(|iiation

(>) ran lie satisfied hv a point not on the line at iulinitv \\'hen

ainl olilv when //- - nl, -- 0. Hence /// cnttii' (] )
?'x n t'r>it,-'i/ i-/i/<'

i/'/n // //" - lit, i=. II, dm I /.s // iiniti'i'iltml ('nil!'' H'lii'il //" nfi -- <l.
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The conic (1 ) is cut by the line at infinity / = <) in t\v<> points

for which the ratio ./:// is g-iveii by the equation

(U--+ -
//./// 4- ////-

0.
(

ii
)

This has equal or unequal roots according as Ir <iJ> is equal or

unequal to /ero. Hence <i << ntr<il <"///< t-i/fx tin' lnn> *it t'ufinif// in f//'

ilfx//tti-f pnintx ; ii lio/u't'itt rill cvin<: <'utx tin' Inn' t tnfiniti/ in fim

('"hn'iili'iit
i>i>!ntx,

So jar the discussion is independent of the nature of the coel'li-

cicnts of (1 ). If. however, the coefficients are real the classifica-

tion mav be made more eloselv, as follows:

(1) h 2 ab<0. The cum; cuts the line at infinity in t\vo distinct

imaginary points. I; is an ellipse in the elenienlarv sense, or

consists of t\vo imaginary straight lines intersecting in a real

point not at intinitv, or is satisfied bv no real point.

(!') h2 ab>0. The curve cuts the. line at infinity in two dist inet real

points. Tt is a hyperbola or consists of t \vo real nonparallel lines.

(',})
h 2 ab = 0. The curve cuts the line at infinity in two ]'cal coin-

cident jioints. It is a jiarabola, or two parallel lines, or two

coincident lines. In the very special case in which /,=</ = //

it degenerates into the line at infinity, and the straight line

j;
r + ,,,, + ,, - o.

EXERCISES

1. Show that for a given conic there goes through any point, in

general, one Mrai^ht line such t hat 1 he segment intercepted by the conic

is 1 liseeted bv t lie poilll .

2. Show that for a given conic there go through any point, in gen-

eral, two lines which have one intercept with the conic at. infmitv.

3. Prove that through the center of a central conic there go two

straight lines which have both intercepts with the conic at intinitv.

These are the .ii/ni />t"fi'x. Show that the iisvmptotes of an ellipse are

imaginary and Ilio-i- of a hyperbola real, and find iheir equations.

4. Show from i ."> i that if ./.: i/n
: t is a point on the conic, the equa-

tion of the tangent line is

(ii.r
:

-f- 'a
ij +,/'/.,)

.'' -\- i A.'
1

,,
+ /<//, + ,'//,,) .'/ + ( /'' -\ .'/.'/, 4- ''' > f ()

-

5. Show that the condition that i 1 ) should represent straight lines is

n 'a f
l> '/ = 0.
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22. Trilinear point coordinates. Let .!/', /'(', and ('A (Fig. 8)

be three fixed straight lines of reference forming a triangle and let

/.- , /r.,,
and /^

he three arbitrarily assumed constants. Let /' be anv

point in the plane AIK' and let
/< r /',,

and
y>. t

be the three perpen-

dicular distances from /' to the three lines of reference. Algebraic

si<^ns are to lie attached to each oi these distances according to

the side of the line of reference on which /' lies, the positive side

of each line being assumed at

pleasure.

The coordinates of /' arc

defined as the ratios of three

quantities ./ , .>'.,,
./ such that

It is evident that if /' is given,

its coordinates arc uniquely de-

termined. Conversely, let real

rat ios (i : </ : ti be assumed for

.r :./:./-. The ratio j- '.rn
= a \<ia

furnishes the condition = con-

stant, which is satisfied hy anv

point on a unique line through A. Similarly, the rat io .r, : .?'
~

'*.,
: ".

is satisfied by any point on a unique line through ( '. If these lines

intersect, the point of intersection is /', which is thus uniquely

determined by its coordinates.

In case these two lines are parallel we mav extend our coordi-

nate system by saving that the coordinates <t : ",: <'.
(

define a point

of infinity. These are, in fact, the limiting ratios approached by

j-
{

:,'.:./ as /' recedes indefinitely from the lines of reference.

We complete the definition of the coordinates by saving that

complex coordinates define imaginary points of the plane, and the

coordinates :():<> arc not allowable.

The coordinates of .1 are <):<>: 1, those of /' are ; 1 : 0, and

t IMKC of (' arc 1 : <>
: ". The ratios of /,- . /- , and /,' are determined

I J :!

when the point with the coordinates 1 : 1 : 1 is fixed. This point we

shall call the unit point, and since the /'* are arbitrary il mav lie

taken anywhere. Ilence the r<,///v////^/V \//.s-/V/// /'a J, /</////'//<</ /<// tJim-

<t rl:/f i-ii r*i ////<x '//
ri'fi'1'i'Hi'i

<tu<l <'n ttrl>it rnry unit pmnt.
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The trilinear coordinates contain the ('artesian coordinates as a

special limiting ca>e, in which the line IK' is the line at infinity, if

IK' recedes indefinitely tnun K /',
becomes infinite, but the factor

/
(

can be made to approach /ero in such a way that L'nn
/c,ji, \.

( 'fhere is an except ion only

when /' is on the line IK
'

and

remains there as IK' becomes

the line at intinit v : in this

ease /./'.---
()

. ) It' in addition

we place /,' -

/,', 1, the coi'ir-

dinates ./ : .i\ t

: j\ beet une the

coi'irdinat es ./ : // : t of i; Is.

23. Points on a line. If

// :
//,

:

_//.,
and 2 : ,?, : 2., <tr<' tn'<>

ti.fii/ i>"intfi,
tin' rn,",i',l!n<iti'x i>t'

an if ji'ilnt
nit tin

1

tttntiifht laic "^V- 1

Jdiniiit/ tJiP.ni /'>' if -\- X.r :

// +
X,:,: //.. -f- X.;.., (tml tin// />"/'//(

irt'f/i tltt'M' ruo/'iUtnitt'S //Vx <>n tJlftt I!in'.

To prove this let )' and / ( l
-

'i^.
(J ) be the two fixed points and 1'

anv point on the straight line YZ. Place
,

--;/;. Then, if
/>[, /',,

and i^ are the perpendiculars from ), /', and Z respectively on

A //, it is e\ idciit Irom similar triangles that

/', /','

'

r" -/',

r\ +

FIG. U

\vlielice

Similarly,

\\hcre p. p' , and p" are proportionality tador-. l'.\

\\ ( ha\e
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The above proof holds for anv real point /'. Conversely, any

real value of X determines a real /// (the coordinates of 1" and Z,

liein^ real ) and hence deteniiines a real point of 7'. For complex
values of X. or for imaginary points )" and '/, the statement at the

beginning
1 of this section is the dt'finiiton of a straight line.

It is to lie noticed that X is an example of the kind of coordinates

ol thi' jxiints of a ran^'e which \\'as discussed in sj S.

24. The linear equation in point coordinates. A humvyeneouts

t

ijiitittt'n
'if the tit'xt (/(///*<'(',

/'i
ju't

-xi' nt x it xti'tntfht ///if, i/inf
('(iiti'O'Nctj/.

To pro\ e this theorem it is necessary to sliow that the linear

equation is equivalent to the equations of ;< 2'-}. Let us have pven

I-'roiu these three equations we have

Then from the theorv of determinants tin-re exist three multi-

pliers X
f X,. X, such that

p.'', ,'/ \-



J'OINT AM) LINK COORDINATES IN A 1'LANK :J7

The elimination of p and X then i;'ives

\\'liich is 11 linear equation in ./-

f
./. and ./..

Hence equation (1) is equivalent to equation ( L' ), and the

theorem at the beginning of this section is proved.

25. Lines of a pencil. //'

It is evident tliat (
>

) re[resents a straight line and thai the

eoi'irdinates of anv point uhieh satisfy (1 ) and ('2) satisfy also (
:\ ).

Furthei'iuore, X is uniquely determined lv the eoiirdinates of anv

point not on (1 ) and (-). lleiiee for all values of X, (
; >

) delines

the lines of a pencil.

The parameter X in
(
o

)
is of the tvpe of eoi'irdinates detined in

vj 1". To show this let us take )'(// ://.,://.), a point on (1), and

'/. ( ~. :v,:.r,), a point on ('-}. Then
// + X^ : //.,+ Xr, : i/ , -f- X.r, is a

point on ('-} ) and al>o a point ot the ratine determined 1\" ) and /..

l>v ^ '.'. X is the eool'dimite ol a point on the raiiijv. and heiiee, as

shn\\M in ^ li, the eoi'irdinate of a line of the peiieil in the sense

of ^ 1<.

EXERCISES

1. Show thai the equation of anv line through the point .1 ot' the

tnaii.uh
1 of re fere net' is .''-}- A./

1

.,
= 0, and tind the etMU'dinates of the

jioint in wliich it inter>ret s aii\ line <t ./ -f- ".,.'.,+ " .-''.
- : *' Distinguish

hi-t\Vrr!l till 1 eases ill \\llirll II :- (I alnl II,
- 0.

','.. \\'ril>' tin- erjuatioiis <i|' two prujrct ive ]M-nrils of liin-s with

the Veil ices I and /.' respect ivrlv. l''ilnl the cijiialinn >ati-tird hv

thr roordiiialt-s of tin- points of inirr>rrt ion of corresponding hnrs.

Hence verif I'lx. 1. ? 1C.
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4. Show that homogeneous point coordinates are connected by the

relation
P ("//, + Mya

+ t'kgf,)
= A

,

when- ", I', and ' arc tlie lengths of the sides of the triangle of reference

and A" is its area. Hence show that

is the equation of tlie straight line at infinity.

5. ('(insider the case in which I! is at infinity, .1 and <' are right

angles, and
/,',
= /.-.,= />-

;)

= 1. Show, for example, that
./^ -f j-.

(

~ is

the equation of the straight line at infinity and that
./^
+

./^ -f- Ar._,
-

is the equation of any straight line jiarallel to .If.

26. Line coordinates in a. plane. The coefficients a
}

,
</.,, '/.,

in the

equation of a straight line are sullir.ient to fix the line. In fact,

to anv set of ratios ^ : </a :
3 corresponds one and onlv one line,

and conversely. These ratios may accordingly lie taken as coor-

dinates of a straight line, or lint- cwnUnatt's, and a geometry may
he hu ilt up in which the element is the straight line and not

the point.

A variable or general set of line coordinates we shall denote bv

it : H : n . and the line with these coordinates is the straight line
1 _' :; O

which has the point equation

Vi+ "-''+ 'V'a^ ' 0)

This equation may also be considered as the necessary and suffi-

cient condition that the line
i^

:
(/.,

:

n^
and the point J\

'?'
f.j

are
"
united

"
: that is, that the point lies on the line and the line

passes through the point.

It is oh\ ions that the definition of line coordinates holds for

('artesian as well as for trilinear coordinates. With the use of

trilinear coordinates any straight line may be given the coordinates

1:1:1. For the substitution

\\hirh amounts to u change in the constants /- . /-
|(

/- in ( 1 ),

i _!'.!. changes the etjuation n^
>

^
+</...'., f '',-'',

(J into the equation

./!
- ./' ./

'

- n.
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27. Pencil of lines and the linear equation in line coordinates. If

r : i' :
> mid u 1

:
<"'.,: ir^

are two fixed lines, it follows inuuediatelv

f'niiii _"> that

t'i+ X//^
: /-.,-f X"

1

,
:

''.,-f-
X"'

;!
( 1 )

represents anv line ot tlu- pencil determined l>v tin- tun lines r
t

ami n\.

('(insider now an equation of the first decree in line coordinates,

It may lie readilv shown, as in ^ '24, that it / : r : r. and // : //', : >r
^

are two sets of coordinates satisfying ( - ), the general values of

// : "., : "j
which satisfv ( '2

)
an- of the form (1 ). Ileiiee(-l) repre-

sents a pencil ol lines.

< >r \\ c mav ai''_;Mie dircctlv from ( 1 ), ^ iM, and sav at once that

anv line \\hose coordinates satisfv ('2) is united with the point

<i : ti
:

: n, and, conversely, that anv line united wit h the point <i : ti
t

: <i

has coi'u'di nates which satis! v ( - ). \\ e have, therefore, the theorem :

77/c
t'/l/<lf/n/t

,1/1 -)- (/ tl
^ -(- <( II _-- rt'Jt/'fXi'tttx

It
jit'/lr/l

<>t ll/lfX <>t

,'/// /// I/if fcrfi-j.- t'x ///i' point ii : ii
t

: <i
:

.

Compare the linear ecjuatioii in point coordinates,

<V'| "+" ''..'''.+ "'';(
= ()

' ('*> >

and the linear eipiat ion in line coordinates,

ii n -)- ".,//.,+ <t.n.= ". ( 1
)

[Cipnitiou (
:>>

) is satisfied l>y all points on a I'an^e of which t he

base is the line witli the line coordinates <i : '/,: n.. It is the />"i//t

1'ijtiiit
/// nt llnit Inn'.

M(|iiat ion (1) is satisfied bv all lines of a pencil of wiiich the

vertex i-- the point with the point coordinates it : d
t

: ti . It is

the It n<-
1'ijliafi'iH "f thill

jxi/'/it.

EXERCISES
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3. Find in line coordinates the equations of tlie points of the range
which lie on tin 1 line 1:1:1; also the point coordinates of the same

range.

4. Find in point coordinates the equations of tlie lines of the, pencil

\vith vertex 1:1:1. F'ind also the line coordinates of the lines of the

same pencil.

5. Show that line coordinates are proportional to the segments cut

nff l>v the line on the sides of the triangle of rctereiice, each segment

hciiiLT multiplied l>v a constant, factor.

(1. Show that line coordinates are proportional to the three perpen-
diculars from the vertices of the triangle of reference to the straight

line, each perpendicular being multiplied liv a constant i'actor.

28. Dualistic relations. The geometries of the point and the line

in a plane are dualistic ( - ). This arises from tin; fact that the

algebraic analysis is the same in the two geometries. The differ-

ence conies in the interpretation of the analysis. In both cases we

have the two independent ratios of three variables which arc used

homogeneously. In the one case these ratios are interpreted as tlie

coordinates of a point; in the other case they are interpreted as

the coordinates of a line. In both eases we have to consider a

linear homogeneous equation connecting the variables which is sat-

istied bv a singly infinite set of ratio pairs. In the point geometry
this equation is satisfied by the singly infinite set of points which

lie on a straight line. In the line geometry this equation is satis-

lied bv the singly infinite set of straight lines which pass through
t O t. O o

a point.

From the above, it appears that any piece of analv.Ms involving

two independent variables connected by one or more homogeneous
linear equations has two interpretations which differ in that

"
line

"

in one is
'

point
'

in the other, and vice versa. Hence a geometric

theorem involving points and lines and their mutual relations mav

be changed into a new theorem by changing point to line and

"line" to "point." In making this interchange, of course, such

other changes in phraseology as will preserve the FOnglish idiom

are also necessary. For example,
"
point on a line

"
becomes

u
line

through a point," and "a line connecting two points
"
becomes

"
a

Mi'mt of intersection of two lines."
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We restate some of the results thus far obtained in parallel

columns so as to show the duulistic relations.

The ratios s : j\,; s determine The ratios it : n
ml

: H determine

a point. a straight line.

A linear equation ",.'',
-f- ".,''.,-)- A linear equation ",", -f- ".,"., 4-

n ..r,
-- represents all points on ?/== represents all lines through

the line of which the coordinates the point of which t he coordinate-,

are" :".,:".. It is the equal ion of are a :":",. It is t he eijuatiuli of

the line. the point.

If
_//,

and
,-;,

are fixed points the If c, and t/\ are tixed lines the

coordinates of anv point on the coordinates ofan v linetliroui^h their

line connecting them are i/
t
-\- Av,. point of intersection are

/,. -f Ac 1

,.

If n
f
r

l
+"

:f
r,.+ l

i.J
f
t
=0

and
''/! + Va + Vs =

are the eipiations of two lines, the are the eipiations of two points,

equation of any line through their the equation of anv point on the

point of intersection is line connecting them is

,/ 4- ,/ 4. ,/11' -i '2
'

:; :i

Three lilies C,, /'',.
(i

t
meet ill

a point when

Three st raight lines

V-/ ,- = (i, V/, .,- o, V,. ,. = o
<L*

' ^-

meet in a point \\ hen

Three point'

V",/ HI. '' ^ '

lie on a st raight line u hen

" /,

i i i

II

29. Change of coordinates. \\Y \\ill tir>t estalili-h the relation

lietweeil a set o| ( 'artesian ci li'inlinat es and a set ot t riliin-ai' eoiir-

dinates. Let .11',. li(\ and ('A le the lines of reference of the
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triliiu'iir coordinates and let their equations referred to anv set of

Cartesian coordinates lie respectively

Then l>v a familiar theorem in analytic geometry

/'i=
^ tt

'f
->

_ "2-'' + '''j// + <'J
1 !

\\"e mav take without loss of eneralit

since each of the eijuations (1) may l>e multiplied l>v ;i factor

\\ithoiit chan^in^ the lines represented.

Therefore \ve have

pj'l
=ti

l

j' + l,
l
,/ + ,'

]
t,

PJ;,= ti^' + ljj 4- ./, (;J)

p.r.
= <i ..r + l.ji + <-.t,

where p is a proportionality factor.

Since the lines A //, JK\ and '".i form a triangle, the determinant

'//',/, does not vanish and equations ( - ) mav be solved tor j\ //,

and /.

Suppose now another triangle A'/t'C' lie taken, the (Mpiations of

its sides l)eillL,
r

and let
./'|

:./.',:./'. lie trilinear eoi'u'dinales referi'ed to the triangle

A' !>'< ''. Then, as before,

p'-''i
-

"[' 4- '>[</ 4- -;/,

f/./

'

"'' f /-.I'/ 4- ''.V, ( > )

//./',
- '/'./ f A.',// f ''/.
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Equations (-) niiiy IK- solved for ./, //,
and t and tlu 1 results

substituted in (4). There result relations ot the form

n .i

cr.r /Vi + /l.r, + #,./. (
;)

)

7,.r,+ 7rr-+ 7 :l
.-

:1
,

which are the equations of transformation of coordinates from

.r,
: .r.,' : .r, t < r\ : ./'', : .r', .

In ("">) the ri^ht-hand members e(juated to /ero jjjive the eijiia-

tions in trilinear coi)rdinates of the sides of the triangle of reference

A' !'>' <
''

. Since these do not meet in a point the coefficients are sub-

ject to the condition that their determinant does not vanish, and

this is the only condition imposed upon them.

P>v the transformation ("">) the equation of the straight line

becomes
\i\.r\ -f- //.',.'' -j- n'^'-i 0,

where pit {

= a
l ><( +(3^i', -f 7i",^

P "
J
= "

,-

"
l'
+ fi.2 .J

4- 7..
"

';
, (

' >
)

^".i
=

"V'l +/^;i"' + 7;;"';-

These are the formulas for the change of line coordinates.

In connection with the change of coordinates three theorems are

of importance.

7. T/II' ili'ijfi'i'
nf iin

i^jimt inn i ii tmlnt in' //'iii' I'niirtl/mite* ix unnltcred

In/ it rJuDii/i' t'rn/n "Hi 1

,s'*7 >,(' t ril iin-ur I'm'iri/itKift'H /" <1)lt>fht')'.

II. If tJit- cnfir<?innti'K //. <iml z
i

<tr>' trnn>tfi>r)m'<l if" (I"' i'fn'h'i1in<it?8

//' nml ,r', (/i f I'nfli'iUtHiti'x v, + X.;. '//v t r<tiist'i>ri> <l inf<> (//>' ewnlintid'H

>/' + X'z|.,
H'Jlt'n 1 \' i'\, I' i'

/'//</ it I'alixtilllt.

III. Tin' -rxx riifi'i >>f' 'nitr x'i/ifx <>r ur //;/<> in uiiJrcnJi'iit <>f

Theorem I follows immediately from the fact that e<juations (^;>

and ( i!
) are linear.

To prove theorem II imte that from (
"> ), it' the coordinate

.'/,-4- X-~, are transformed into ./', then

a-.r[
= n

} (>/^
+ \.^ ) + a., ( //., + Xr. )+'(,( //. + X,r. )

( a^ 4- a, ,//.,+ 'i.,//.
)+ A

('(,:,
4-

'(./,,
4- '( ,.:

:

.
)
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where (T and cr
,
are used, since in transforming //.and z

{
l>v

(_;">)
(lie

proportionality factors mnv differ.

Similar expressions mav be found for X and ./',. Hence \ve have

ii i&ii^-ii^'t i i

./-,
: ./., : .r,

-= >/, + ~

\~, : //., 4-
-

X.?., :
//.. + - "

A.^, winch proves the

"i /,
theorem. The same proof holds for line coordinates using equa-

tions (',).

Theorem III follows at once from II.

30. Certain straight-line configurations. A wmpJctr n-?hh- is

defined as the figure formed by ti straight lines, no three of which

pass through the same point, together

with the
.',

)i
(
n 1 ) points of inter-

section of these lines. A complete

three-line is therefore a triangle con-

sisting of three sides and three vertices.

A complete four-line is called a com-

plete quadrilateral and consists of four

sides and six vertices. Thus in Fig. 10

the four sides are ". f>. <-, </ and the six

vertices are A'. /,, .)/, -V, /', (
t
>. Two

vertices not on the same side are called opposite, as A" and .17, L

and .V. /' and
(,>. A straight line joining two opposite vertices is a

diagonal h'tif. The complete quadrilateral has three diagonal lines.

A I'ompJetc n-p'iint is de-

fined as the figure formed by
n points, no three of which lie

on a straight line, together

with the \(r> 1) straight

lines joining these points. A

complete three-point is there-

fore a triangle consisting of

three vertices and three sides.

A complete four-point is called

a complete quadrangle and

consists of four vertices and

six sides. Thus in Fig. 11 the four vertices are . I. /'. ('. /> and

the six sides are k, /, m, n, p, q.
Two sides not passing through the

same vertex are called opposite, as k and ?/>, I and n, and
/<

and
y.
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The point of intersection of two opposite sides is a diagonal

point. The complete quadrangle has three diagonal points.

It is obvious that a complete /(-point and a complete //-line are

dualistie. A triangle is dualistie to a triangle, and a complete

quadrangle to a complete quadrilateral. '1 lie diagonal lines of

a complete quadrilateral are dualistie to the diagonal points of a

complete quadrangle.

For the complete triangle we shall prove the following dualistie

theorems :

7. The theorem of Desargues. If t>r<> ///// /////* are * y//^v<7 tint f/n>

stt'itfi/Iit If'it'-x i'"ii ni'i'tiinj /I'l/it'i/ni/i/iix >*'/( ii'fx ID, ,-t In /(
ji'>inf,

t/n'ii ///;

l)0//ltX lit / lltl'/'Xl'i'f/'i/l "t Iln/lll'lni/illIX ft/i/l 'X III' "I! it xfrnil/ltt Jill,'.

II. If I"''! f,-iil/ll//l'X III'!' X'l
jl/llri',/

tl/'lf till'
Jln/'ll/K

nf llltl '/'X, 'i'f/'"/l

nf Jiu//i'i/",/iilix */'</< x //i' nil il sf/-il/f///f l//ii', tin')) tin' f/'/n'X i'"iin,
'I'tiiliJ

Let there be given two triangles with the vertices J, /', (' and

J', /'', ('' respectively (Fig. ll') and with the sides //. n, / and

u\ //',
'' respectively, the

side '/ Iving opposite the

Vertex J etc.

\\'e shall denote bv

A A' the straight line

connecting A and J',

and bv a<t' the point

i if intersect n m ot it and

'/'. Then the two the-

orems stated above are

respect ivelv :

If tin' Kf /'//;//// 1 1 /I I'*

A.I', /:/:', <>/i<l rr' M ,-,-t

In it point 0, tin'
jiaitttx nit

1

If tli,' i^nit* <n i', I-!,', ,t,nl '!' />'' "n ,i xisitiiilit Hi" ". f/" .-'

lini'x .1.1', /;/;', ,///,/ cc' 1,1,',-t In ,i )><!/( o.

n, I cf
1

//>' i>n it at fii'ilit //'//' n.
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the unitTake
-\

> as triangle tit reference and
\

> as
'"'"

1 f /'^
1

,

"
I" Then tin' coordinates of

j |
arc 0:0:1, those of

| 7) |

arc 0:1: 0. those of
]

'

1 arc 1:0: 0, and those of \

'

\ are 1:1:1.

f I'l r/n
T>\ $ JS the coi'irdinates ot ]' f

arc 1 : 1 : 1 -f X, those of < >

l<t J I/' J

arc 1 : 1 4- /J.
: 1, and those of

-j
,

r are 1 + ^:1:1.

The coordinates of any /
.

l" )int on A '

!'\ are therefore
Lline through f/'//J

..... f point lies also on .1 />'

1 + p: 1 +p( 1 -f /*):! -f X + /o,
and if this 1

l
'

, ,

passes also through ab

f re
1

~]we must have p = 1. Hence the eoi'irdinatcs of <
, ,/ f

aro

: u : \. Similarlv, the coordinates of S ^ are v : : X and
,

I />'/,"/

- J
""

I
the coordinates ot 1 < /

1
are v : /* : 0. Since

-/* X

- X = 0,

u

r ^ fiit t ~\

I points a</ lili , a' I f
trie three ( .. lt , , , ,( have a common J.

limes j.C, /;/;', cc'j \
two theorems are therefore proved.

,. f point 1 f line 1
1 he < ,. / enuat ion ot I he < . > is

t line J I point r>J

.

point ()

C
X/z./'j

-f- i'\.r
, -f pi'*..

-f-

1

J

l-'or the complete quadrilateral we shall prove the following

thci ircm :

///. A/IIJ f'l'n
<l((i>fnnnlx tit' it

/nniplt'ti'
nil /til riliitiTitl hitfrx< :

<
i

t tin 1

/////>/ tfiuf/nmt! in tii'n jHiinf* //'///'// iiri- lut rinmi'ii' rnnjtx/dft'K f" tin ftrn

i-i rf/i'i-K ii'fiu-fi I if an t/i/tf (Hiii/miiil.

In I-'i^. I:! let the two diagonals /..Y and .I/A' intersect the third

diagonal l'<
t

> in the points li and ,s' respect i\cl\'. \\'c are to prove
that A' and .s

1

are harmonic conjiiLrates to /' and <
t

>.

Since liv III, ^ 'Jit. the cross ratio is independent of the coordi-

nate svstcm. we shall take the triangle IJ'<> as the triaii'j-lc of
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reference and ihr point A' as tlic unit point, so that the coordi-

nates of /' are 0:0:1, those of (
t

> are 1:0:0, those of /. are

0:1:0, and those of A' arc 1:1:1. Then l>v < iM it is easy

to sec that the coordinates o!

I! are 1:0:1, those of .]/ arc

0:1:1, those of 1\ are 1:1:0,

and finally that those of S

arc -1:0:1. p,y jj
11 the

thcol'ein follows.

The dualistic theorem to III

is as follows :

(III I'll <1 til'JnlKll l>nlltt,
tin' (ll'n )nl III //'/ /tHt'H ill'l' ]nl I'll/nil t '' ft i// / //'/'if t'X

fu tin- tii'n x/'i/i-x 'it' thi< <niit<]r in/li* which jxtxs f/irn<//i f/t>/f tliir<l

i]nn/nii, il point.

The proof is left to the reader.

Since the cross ratio of anv four lines of a pencil is equal to

the cross ratio of the four points in which the four lines cut anv

transversal (^ In'), theorem I \' leads at once to the following:

V. Tin' xfi'iin/lit Inn' fu// tii'i'f t /a/ ilili/ tim il nii/nini! jmuitx "t it t'ntn-

jili-fi- <[iini] 1'itin/li'
iiH-t'tx tin' s/'i/rx at' tin 1 iiinnl rii iii/li

1

/r/iii'/i <!<> nt JHIXX

t II l'<illi/ll til'
1

til'" i/ tili/n//il/ [mlHtx, ill /tl'H lin/llfx !/'llli'Jl dl'i' ll'l I'/ll'iH !>'

rnnj {li/ilt, X 1n ill,' tll'u iliili/nii'll jiniiltx.

S'unilarlv, theorem 111 ma\' lie ivplaceil b\- the theorem, dualistic

to \ . as tolli iws :

VI. // tin' Utti-rM'i-tit ill 'it' >//!// til'" if/Hf/'ili'l/ Ihn'X <>/ 'I
t'ntitj,],t,'

ijii'iil
riliiti'i'iil /x i'n ni'i'li -il iritli tin- tiro 1't'i'firrx <>}' tin'

ijiiiiil
r/l lit , />//

ll'llii'll ll'i lint //',' nil ///, tll'n lUililnllllla, //I'' tll'n l'< i II 1 1 1' < 'f I 1 1 1J ///I''X ll/'i

//il /'///// /(
i-nllj Ili/ilf i X tn tin' tll'n il'l, li]!, IK I/X.

Theorem III '_j'ivcs a method of tindin^ the fourth point in a

harmonic set \\heii three points arc known. In I' IL;'. 1 '> let us

suppo.se /', O. and // ^iven, and let it Ke required to lind >'. The

point /. may lie taken at pleasure and the lines /./'. /./.'. and /.',>

drawn. Then the point .V mav lie taken at pleasure on /. // and



T\Yt> m.MF.NSloNAL GEOMETRY

the points .!/ and A" determined hv drawing (,>.V and 7'JV. The

line .I/A" can then be drawn, determining S.

\\'e \\ill now prove the following theorem:

VII. Theorem of Pappus. If /', /', /' <!/>' tlir> pnhitz ,>n a

xffiii'//// fin'' iiii'l I',
/,', /,' iifi

1

tlif, -I- pouitx on another nfrttiy/it l/>n\

tin' tli,;,'
/'"iiitx <>f iiiff/'Ki'ffi"ii <f tin' thri'i'

/><///* of linrx 7,
>

/_'
and

/
4
'/'. /'/ '""/ /'/,' I'Jl '""I I'Jl h'' " ftrnii/Jit /hi*'.

\\'e mav so choose the coordinate svstein that the line contain-

ing /.'. /'. /-' ( I'"
i'_;'. 1-0 shall be

.^
= and the line containing

/.!. /.'. /,' -hall be ./,= <>. \\'c may then take the line
/,'/_!

as the

line ./ = 'I, so t hat the coi'irdi- tj
-

/ \

nates of
/,'

are (H :!:')) and

those of /.! are
(

1 :
<

:
H

). and

mav so take the unit point

that the coordinates of /'. are,

(0:1:1) and those of
/,'

ai'e P,

(
1 :

n
: 1 ). ( 'all the coiii'd inates

of /' (
il : 1 : X) and those ol

/,' ( 1 :
o

:

f_i ). Then the eijita- JT^T

tii m of /; /! is ./',

- and that

of /,'/' is ./, -f- X./'., ./' r
--". These

lines intersect in the point

A" (X :
- 1 :

(

>).
The conation

of /' /' is
./-., .r,

- il and that

of /'/.' is /a./'
4- X./-o .*.,= 0. These lines intei'scct in the point

L ( \
- \ :

fj.
:

/JL ).
1 he ei

jiiat
ion ot /' /| is ./ + .''., .''.,-= and that of

/.' /' is
fj..'

'

- -
.r -- ii. These lines intersect in J/" (1 : /x 1 :

/z). Since

X -1 'i

IX
f.i

n. I),

|

the three points /.. A", M he in a straight line, as was to be proved.

Dnalistic to this theorem is the following:

VHl. If /'.. />., /'_
<!,; t /I /<'' Xt,-<li<lltt HtH'X tl/l-ntlitJl 'I

)><>;( flit'?

l>
.

/'
.

i> f
''/'' f fii'ii' N/ /'//////// liin-K ////'///'/// tl/inf/it't'

jxii/it,
t/n' f/i/'ii' /tllrK

'""'<'><:/ 'I-' f !'' /'">" ;'' /""'/''-' /<,/',
<iH>1

/',/',- }>.,/>,
<iH>l

/'./>,,
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EXERCISES
1. Prove theorem I V.

2. Prove theorem \'1 1 1.

3. A triangle is so placed that its vertices /', <j, /,' arc on the sides

AH, A'', and !'><', respect ively, of a fixed triangle and its sides /'/,' ;md

A'',' puss through two iixed points in u straight line with .1. Prove that

the side /'(,* pusses through a iixed point.

4. A triangle is so placed that its sides (>/', /'/,', r<> pass through

the Vertices
(.', />', .1, respect i Vel v, of U 1'lXed triangle and its vel'tiees 'I

and /' lit 1 on two iixed lines which intersect on 1>< '. Prove that tin-

vertex A' lies on a straight line.

5. Given a straight line
y/
and two iixed points .1 and I',. Take any

two points on p and eonneet each of them with .1 and //. These lines

determine two new points (' and 1> bv their intersections. Prove that

the line <'!> pusses through a Iixed point on A/!.

6. (liven a point /'and t wo Iixed lines u and f>. Draw anv two lines

through /' and connect their points of intersection with n and />. This

determines two new lines < and '/. Prove that the point of intersection

of i" and <l lies on a Iixed straight line through "?,.

7. Three lines/', y, li are drawn through the vertex .! of t he triangle

All''. On
(i any point is taken and the lines /and /// are drawn to f

and Jl respectively. The line / intersects /' in 1> and the line /// inter-

sects }t in I'.. Prove that 1>1'. passes through a Iixed point on Hi'.

8. Three points /'. <i, II are taken on the side J}<
'

of the triangle

AI><'. Through <i any line is drawn cutting All and AC in /. and .17

respectively. The lines /'/. and JIM intersect in A'. Prove that the

locus of A" is a straight line through .1.

9. Show that if n, u' and A, //' are any two pairs of corresponding
lines of two protective pencils not in perspective, the line connecting
the points nli' and "'I* passes through a tixed point. This is called the

<-! n fir >if' ]/ni,ii>ln,/ii of t he two pencils. Showtliut it is the intersection

of t he two lines which correspond to the line connecting tin 1 vert ices ot

the pencils, considered as belonging tir-i to one pencil and then to tip-

other.

10. Show that if . I. .1
' and /,'. //' are anv two points of two pn.j

tive raiiL,
r e-' which are not in perspective, the point of intersection of

the lines All' and .!'/>' lies on ;i fixed straight line. This is called the

a.ri.< nf Jmiiinln'ii/ of t lie t wo railLfes. Show that it intersects the I'Usenf

each range in the point which corresponds to the point of intersection

of the two liases, considered as belonging to the other range.
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31. Curves in point coordinates. The equations

J\: s.,: .r,
=

<,(/) : <M '
> : <J>,(0, (V)

\\here / is an independent variable and the ratios of the functions

arc not constant or indeterminate, define a one-dimensional

extent of points called a citri'i'. It is not necessary that any point

of the cur\e >hould lie real. We shall limit ourselves to those

curves for which the functions <,(/) are continuous and have

derivatives of at least the lirst order.

If 4>,(t) is identically /.ero the curve is the straight line -''

3
= 0.

Otherwise we may write equations (1 ) in the form

It is then possible to eliminate t between the equations (-) with

the result.
11 = cD

'

V*

Conversely, let there be given an equation

where/' is a homogeneous function in ./..>. r.. Iv a homogeneous
function we mean one which satisfies the condition

/'(X./-J. X.r,. \s
a )\"f(.r i

, ./;,, r
;!
).

where X is any multiplier, not zero or infinity. In particular, if we

place X - we have
./

lor all points for which r is not /.em. Kquation (4) mav then be

writt<i|1

h

\\ e shall limit ourselves to functions /'\\'luch are continuous and

have partial derivatives of at least the lirst order.

\\'e shall also ;is>unie that ( { ) is satisfied bv at least one point
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does not vanish. Then similar conditions hold for ('>), and by the

theorv of implicit functions
' we have, irom (>),

,S' =3

which is valid in the vicinitv of t = , * = '

//a ^,
1 his last equation mav he written

which is of the type of equations (
1 ). Hence, under our hypotheses

('([nation (4) represents a curve.

The above discussion leaves unconsidered the points for which

j- = 0. These mav be found bv direct substitution in (4 ) or we mav

repeat the discussion, dividing by some other coordinate, perhaps j^.

Let /'(// :
//., ://..)

be a point of (1) corresponding to the value

/ = f . and let (,M//+A// : //, + A//.,://.. + A//., ) be a point correspond-

ing to t + A/. These two points lix a straight line with the equation

the coefficients of which are determined bv the two equations

tt
l
( >/

1
+ A

//, ) -f- ., ( //., + A//., ) -f it.. ( i/., + A// . )
== 0.

From these it follows that

It is to be noticed that these involve the ratios of the in-

crements A//, A//,. A//.. If now A/ approaches /.ero, ihe point

(,> approaches /'. the ratios
A//^

: A//., : A//, approach the ratios

i///j
: <lif^ : it if , and the ratios ft : <ta : it., approaeli the limiting ratios

: n .=

The straight line (
ti

) with the cocl'iiciciits delined bv (
>
s

)
is

the limit of the secant I'*,) and is called the t<i/i</>-nt to the curve.

If the ('([nation of the curve is in the form (4), the equation (if

the tangent mav be modified as follows:

Since
.'(//,://.,://.,)

i.> a homogeneous function we have, bv

Kll lei' S 1 heorelll,
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()n the other hand.
'///^ <///.,, <///., satisfy the condition

iJf=
;

/

-^//
1

4-
';;<///.,+^^3

=0. (10)

the ec
1

1 uit ion nt' the tangent line is, from (S) and (Id),

rf' < /' of
.'.

' + .'.,

' + J\.
'

- >. (II

= 0, =0, =0. (12)

Points for \\ hirh the conditions (1 2) hold are culled xin<inl<ir /mint*.

\\e mav --11111 up as follows : At rt'eri/ nutusiiit/ultii' jmtHt (>/ :_//.,://.)

/'(./'. ./' , ./' )
= (')

v
1 -J ;t

'

///,/v /> ,/ :/,/initt' tititi/i'ttt l//n' i/ti'i'/i /_//
///< w[nation

(f (f cf

('onsiiler now anv straight line dt'terinined hv two fixed points

// and ~i
t

so thai if.-\-\zi
is any point of the line. The point // t

-f \z

lies on the cum- ( 1
)
when X has a value satisfying the equation

\\hii-h expands hv Tuvlor's theorem into

-I+JA + J.X- f- ... = <, (14)

It // is on the eii r\ c ( ! ), .1 : (I and one root of (14) is /.en>. If,

in addition, .1 " and // is not a singular point, ^. lies on the tan-

^'n i line to ( 1 ) and two roots ol (1 1 ) are /ero. It //, is a singular
'

of the curve, I
" and ./=-() for all values of ,r : that is,

i

:
ii it >///. /I//*//- i><>ii,t

><!'/ <//,', ittti'/'xi-clx (/ i-nri'i' /n <((

, ,///,-/-/, ,,(
[...'nits.
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If t\.r , ./, .r. ) is a homogeneous polynomial ot the //th degree,

the locus of points satisfying (4) is defined us a ,/>//> t ,t' ///> nth

oril<r. Equation (14) is then an algebraic equation of the //th

degree unless its left-hand member vanishes identically for all

values ol A.. Hence dtiif ruri't' f tin 1 nth //>'/ t* <///
/_// <mt/ xtr<<i<//tt

Itni' t/i n point* mili'xx tin' itf/'<n'i//i( Inh' lift 1'iit iri'l
;/

<>/i t/n' fiii'i.'f.

32. Curves in line coordinates. '1'he eiiiations

\\here t is an independent variable and the ratios of the functions

(/>,(/) are not constant or indeterminate, define a one-dimensional

extent of straight lines. We shall see that these lines determine

a curve in the sense of sj :>1. Equations (1 ) are called the line

equations of that curve.

Proceeding as in ^ ol with the same hypotheses as to the nature

of the functions
</> l (^)' WL - lliav sho\v that equations (1) are

equivulfiit to the e(]iiation

('(jnverselv, let there be given an equation

/( >/
i? //,, //

, )= 0, ('!)

where f is a homogeneous luiiction in n , it,,, u
.

: \\'e mav show, as

in vj -Jl. that cjiiation ('!) deiines a one-dimensional extent of lines

of the type ( 1 ).

The discussion now proceeds dualistically to that in ^ -\\.

Let y( i' : ': r.. ) and y (

r^
-f- A/^:

'

f- A'\,: '',
A/ 1

., ) be two straight

lines determined bv placing / / and / /^+A/ in (1 ). Thoe
two lines determine a point l\ the coordinates of \\hich >ati>fv the

t\vo eijuations

(
/ + A/' ').<+( '+ A/-..

Now let A/ approach /ero. The line
>/ approaches ihe line

/-.
ih

ratios A' 1

: A/ 1

.,
: A/ 1

., ajiproach i he rat ios !//;,/,;,/,. ain i t he pi >m

K approaches the point L. <>t \vhich ihe coi'irdinates areii i

.- : j-: ./- >,/, - r ,/r : < ,/, , :',
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1>\ \irtue of
(J> ) and (

1 ) the points /, form in general a curve.

An exception would occur \\hen the I'ight-hand ratios of
(^> ) are

independent of /. In that case the points L for all lines of
(^1)

ei uncide.

If the extent of lines is defined by a single equation (-!) the

coordinates ot /, mav be put in another ionn, as follows: Sillee/

is a homogeneous function we have, hv Killer's theorem.

(f < /' < /'
'

'',+
'

''.,+
'

i' =
>(t
= 0.

( / t r^
'

( t\

< f ( f f f

'1 In- coordinates ot /. are theretore

ft' < f (

( h

These equations determine a tiniqiie point on anv line
j>

unless

borlio-id of
>\.

This would happen, for example, if

/ ( '',",+ ".,"., + "..", )</>( ",. ".,, ".)

and
i\

is anv point which makes the first tactor vanish. The points

/. on all lines in the neighborhood of /. are then all <( : <t
i

: if...

Leaving the exceptional case aside we have the theorem:

f hi iiiii/ ii'inxiiii /uliir I/HI' "/' </ niii'-<l i an' iixiniiitl i '.rti nt nt Inn-* tin ri'

Inxil
iliil'iiii' i>"iiit,

i-ill/ii/ il ] 1 111 il
j>"l

lit , tin
1 /HI-US nt (I'll It'll IX til i/r/li /'i//

>l t'lli'i'i; 77//.V rU/'l't' ix xiliil tu / 1/1 /i/ni/ in I'm,' <-unr<i i lull i x In/ tin'

i

ijiiiit
ii.n nt tin- I/in' i.rtint. In xini-iiil fiixi-x tin' r/iri'i' unit/ rid iii-i' In

'i
I'-i/nt a/- i-., ///,//// </ iitiiiilnr ni

ji'iinlx
tin jHirtx

nt tin' i-ii/'i'i
1

.
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In case we have a true curve of limit points it will he pos>ihle

to solve equations ( I; for r : /_: r and sulistitute in (-). This

'_d\es .
,

\\liich is the equation in point coordinates of the locus of A.

From (
.) ),

( r ii
i

'-,"' +>:,"
- + >.,'

i .r
~

i ./

"
' ./

~
P'\-

i ./'.

This shows that the tangent line to the curve (.>') at the point

/. is the line
/'.

Ileiiee \\'e ha\c the theorciii:

J'Jili'/l lilli- <>t il li/(t'-<It'ltU'lt#tfilHtl I.l'l> III
_t

I/ltt'X IX litlUjiItt (it tt*

Hunt iii-nit t" tin' citt'l'i' H'li/i'Ji IX tin 1

IIII-IIH nt tin' limit
[><>intx.

Tin'

liin.-: ///-//'.-/,
ftti'ffuj)

t/li' i-Ui'i'i'.

Li'i us suppose now that in equation (
- ) t

/" is an algebraic jiol v-

noinial of the //ih decree. Then the locus nf the limit points /. is

called a i-it/'i'f nf tin' /if// f/itx*. \\'e shall pi'o\c that ////"//;/// <<n</

jin'lllt
"t' ///c

jililili' i/u II /i/K'X till/'/i'/lf f" 'I rll/'l'l' "f tin' lltll i-tilsK.

lo do this \ve have to sho\\~ that // lines sat 1st vm^ e(|iiation

('!) '4'o throii^'li anv point o| the plane. No\\- anv point is li\cd

h\ t \\ o lines ' and tr., and an\ line tlil'tiii^Ii that point has the

eoi'irdinates ; -f- \>/\. This line satisfies ( i' ) \vhen \ satislies the

I I uat ion

This is an equation of the //ih decree, and the theorem is proved.

\\'e ha\c shown in this section that a one-dimensional extent

of lines are in general the tangent line- to a curve. ( 'on verselv.

the tangent lines to an\' curve are rasilv sliown to he a olie-

diiuensioiia] extent of lines. An exception occurs onlv \\heii the

curve consists of a nnmlT o| strai'dil lines.
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The dualistic r^Uuion between point and line coordinates is

exhibited in the following restatement, in parallel columns, of the

results nl' ^ ill and ol' :

An ec[iiat ion
/(.'',. ''.,.

.''.j)

:= ^ is

xiti-died hv a one-dimensional ex-

tent of points which he on a curve.

A line jiiining two consecutive

points cit' the curve is tangent

to the curve. Its line coordinates

cf cf cf
are ii . ii ,: a, -

' - ' '

.
ine

C
~'\

C^2
'

3

elimination of ./:./.,: r between

these equations and that of the

curve gives the line equation of

the curve.

The equation of the tangent

line to the curve defined by the

1'nint extent is

An equation ^/"(MJ, .,, 8 )
= is

satislied by a one-dimensional ex-

tent of lines which are tangent to

a curve. A point of intersection

of two consecutive lines is a point

on the curve. Its point coordinates

/ . cf cf
jc,: xa

= ~ --- 1 he

elimination of
]
:.,:i/ 3

between

these equations and that of the line

extent gives the point equation of

the curve.

The equation of a point on the

curve enveloped bv the line ex-

tent is

If./
1

is of the ?/th degree the

curve i> uf the n\ h order.

< )n an line lie

If f is of the th degree the

curve is of the ?<th class.

points of the Through any point go n lines

which are tangent to the curve.

The curve of the first class is

a straight line, the base of a pencil a point, the vertex of a pencil of

of points. It is of zero class and lines. It is of zero order and has

has no line equation. no point equation.

curve.

The curve of the iirst order is

EXERCISES

'ind the >ingular point of jrf -f .rf./-3 .r.;./- (

= 0. Show that

a the singular point go two real lines which meet the curve in

oincidi-nt points. Sketch the curve with special reference to its

i with the t r;;tii'_;it" of reference. Also sketch the curve interpret-

coordinates as ('artesian coordinates and taking jr. = 0,
-''._,

0,

successively as the line at infinity.

'mil the >iii!_Milar point of
J-,

H
j-,r>.,

= 0. Show that through it

oincident lines which meet the curve in three coincident points.
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3. Kind the singular point of the curve
./-j

!

-f- rf.i-.j -f- .rrr.j
= 0. Show

that through it go two imaginary lines which meet the curve in three

coincident points. Sketch the curve as in Ex. 1.

4. Kind the line equation of each of the curves in Exs 1 -'?.

5. Show that anv point whose coordinates sat isfv the three equations

= 0, = 0, lies on the curve /' and is therefore a

Cartesian coordinates are unven hv '

0,
' - = 0. provided the solu-

-

CJC Ci

singular point.

G. Show that the singular points of a curve in nonhomogeiieous

' ' -

iJ

tions of these e(|uatioiis also satisfy f(j",t/)=Q. (Compare Ex. 5.)

Applv to lind the singular points of .<- -f- //"
= ' and ./ //~

= ().

7. Show that through anv point mi a singular line of a line extent

go at least two coincident lines of the extent. Hence show that if the

extent envelops a curve of the n\\i class, the singular lines are the

locus of a point such that at least two of the n tangents to the curve

from that point are coincident. Illustrate liy considering the line extent

//
!

-f- H.,lf.~
= 0.

8. Il'y'i./
1

, ./. ./ )
= is the equation of a curve and // : //.,

.
//.

is a

lixed point, show that the equation

ct' ( f cf
//,

- + .'/.,
r- + ;/.,

' =
l(

''\ '^o ^'',

I'ejiresents a curve which pas>cs through all the singular points of

f and through all the points of taiinvncv from ,/
t

to /'-- 0. lait

intersects/' in no other points.

9. Prove that a curve of the third order can have at most one singu-

lar point unless it consists of a straight line and a curve of second

order, or entirely of straight lines.



\
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point :
"

: 1 . Th- d'-'jT'-*- nf th.- t-ipiatinn will imt U- > -l.ai^-'i

fi L". (
>. Imt in th- nt-'.v -ijiiati"M

w>- -hail hav- </ = ", ./_ = <..

./ 'i. 'I'liL- t-.jnatinn tht-n-fnpt- U-fi,m->

whi'-h '-an }> factored intn t'.\'<> lin>-ar fa<-t"!--. 'I i;>--- f,i--t<ir> >'an-

imt }
.-(jual. fnp if tht-v U'-r-- we >li-iiild hav- -/. : / := -/ : ./ . a:-i

\\-"u!d liavt- iimr.- thaii (.rn- -njiitinn. H.-n'-- th.- 1m u- "f < 1 , .,,;,.

sists nf two inteix-'-tiny; -ipa:'_r :.t lin--<.

( 'A>K III. />= '. iiri'l all its ii:>t ininnj-> a:>- x^rn. A:.v sfluti-.tn nf

on'- nf tin.- fjnatinn- r '1 > i- a snlutinn of th-- ntln-rs. an-i th'- '-urve

ha- a lint.- (.if -insular pn-nt-. If },y a f-hanurf ' "f ' if-"'rdinate- that

lint- i- takt-n a- tli- lint- r = 0, w.- -hall hav t
- in th>.- n>-'.v eijua'inn

,i
n
= n = ,i -'i '/ = 0. aii(l tilt/ (-ijuation tn-i-nines /.='.'. !{:.'-

in thi- i-a-t.- ih-- curv,- ronsi-t- nf twn coincident straight line-.

Suminincr up. w- hav- th-- fnllnwincr theorem:

///-//
j,',u,t. If if /,,/.y ,/ //,,.- -,f ginijul'.ir j

,/,//,/,/ r><!;'.nL

Tlit- fiirvfs ' if st-fonil <ir'l-r in lionii'^ii^nus rr>i'iril!natv> ar-- if.'-

saint- a til-' coni'-s in ('artr>;an ci H"irilinat>-<. fur. as slid\vn :;i ;j i!'.'.

tin- il"_frfi- i if an fijuati'"'n 'N nut alti-ri-'l bv a rhali'j*- <if r<">r<I::.atf-.

\V'- niav on ocrasi'in distinguish lictwf.-ii th.- cnnii-s \vith"iu >::._"!-

lar ji'iints and thnst- \vhic)i musist "f twn s;rai'_r lit lint-s ov ca'.linu'

34. Poles and polars with respect to a curve of second order.

\ Mil. i ''>], if
//,

i> a piiint "ii ili.' cniiir ( 1 ). s- '.]'.], tilt- lint.-

i'ii-ilinates of tlui tan^'-nt at // ar>>
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Equations ( 1 ) then associate to any point //,
a definite line

,.

This line is called the /<"/<'/
of the point, and the point is called

the pole of the line. The equation of the polar is

If
//,

is given. ?/,
is uniquely determined l>v (

1 ): hut if x
t

is given,

//,
is determined onlv when equations (1) can he solved, that is,

when the discriminant I>, ^ >:>, does not vanish. Hence,

I. T" mil/ jmfttf
i>t' fin' plane cnrrt'itp'inilx ctUcni/s unique poliir ;

hut to any litif i if t)n [

jilttm' fitrmtpomli* >t uni<pi<' jm/,- ir/nn <tn<l >.>nhf

u'hsn thi' I'urri' hux n<> siw/uhtr point.

The following theorems are now easilv proved:

//. Tin- pnJiir
ii f <t i>i't <>n the cnri'f it f/n' f<oi</r)if li>n> cif tJi,it

point <tn<l* t'tinvi'wli/, f/n' ph' <>f nn>/ t<iti;/i't t tin- rur>'i' /x t/n' point

of 1'ontni't of tl, t
'

1nn;/ent.

It is ohvious that equation ('!) reduces to the equation of

the tangent when the point //,
is on the curve, ('onverselv. if

equation d) is that of a tangent to the curve, the solution

of equations (
1 ) will give the point of contact.

///. Tli' politr of a pnhit pnxHf* tJn'oui/Ji //>, p
irjn-l) tin

pniiit IK o/l f/n' I'lirri'.

This follows from the fact that the substitution
.'', //,

reduer's

equation ( '2 ) to the e<|uation of the curve.

IV. Tin' /"'A//' nf II II >f poillt pitKKlK f///-o/l</// till' Xl'/l'/lt/it/- jiu/ltfx /if

tin- <>>/r>'i tt xiirJi i j'ittf.

V. If it
fi'iinf

!' Ii, x "// tin-
jxiliir if 'i point

<
t
>. tin n (J //,-* ,,n th?

lnr o /'.
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If /'is the point y. and (
t
) is the point z, , the polar of /' is

and that of (J is

Tlie condition that /' should lie on the polar of <
t
> is

which is just the condition that <
t
> should lie on the polar of /'.

VI. If '7 curve of seennd ori/er )mx tin mniiulcir i>oinf, fn' t/ini/, ///x
. r i '

niai/ he eini it'll to the cur>'e frm iitii/ point not n>i if, ,/,/,/ f//,' i-h>.,;/ ,,,//.

net'tini/ the points of cont/ict of them' t<ni//enfx /x the pohi , ,,f fh,- point

of intersection of the tan</entn.

Let P (Fig- !">) be a point not on the curve. The polar of /',

being a straight line, cuts the curve in two points T and N. These

two points are distinct because by theorem II the polar is not

tangent, since P, by hypothesis, is not

on the curve.

Since by hypothesis the curve has

no singular point, it lias a unique

tangent line at each of the points T
and ,V. These tangents are the polars

of their points of contact and hence by
theorem Y pass through /*. The polar

of P therefore passes through T and ,S'

(theorem Y).
There can be no more tangents

from P to the curve, for if there were,

the point of tangency would lie on 7'.S' by theorem Y, and hence

TS would intersect the curve in more than two points, which is

impossible. The possibility that TS should lie entirely on the curve

is ruled out bv the fact that in that cast 1 the curve would consist

of two straight lines and would have a singular point, which is

contrary to hypothesis.

This theorem as proved takes no account of the reality ot the

lines and points concerned. In the case in which it is possible to

draw real tangents from /'.however, the theorem furnishes an easy

method of sketching the polar of /'.
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When real tangents cannot be drawn from /', as in Fig. 1*1, the

po'ar of /' mav be constructed as follows:

Through /' draw two chords, one intersecting the curve in the

points 1! and N and the other intersecting the curve in the points

'/' and I'. Draw the tangents

at the points /.'. N. '/', and /",

and let the tangents at // and S

intersect at /. and let the tan-

gents at '/' and /' intersect at A".

Then, hv theorem VI, /, is the

pole of A'\ and A" is the pole

of '/'/'. Consequently the polar of

/' passes through L and A' and

is the line Ll\.

VII. For a i-urre of wvml order

iriili'iiit xiii'julitr jiointx it in possible

in iin intiniti' tnunbi'r <>t tfiii/x f/> cotixtnti't truni'ilt'n in ii'h/i'Jt i </>// ,sV'/'

/X f//i' Imliir o1 tin'
njijxiXltt'

I'l'/'fl'J'. Till Hi' il/'i' I'llllnl !<i 1 1
-jinjil

t' ( t'/'l >l'//i'X.

We may take A (Fig. 17), any point not on the curve, and

construct its polar, which will not pass through -I (theorem III)

and cannot lie entirely on the curve,

since the curve has no singular point.

We may then take /'. any point on

the polar of -I but not on the curve,

and construct its polar. This polar

will pass through .1 (theorem V
) bin

not through // (theorem III). The

two polars now found are distinct

lines (theorem I> and will intersect

in a point <'. Draw All. Then All is

t he polar of f hv t heoivni V. The

triangle .l/:c is a self-polar triangle. I-'i-.. l~

VIII. If 'i, a/ xtfui./Jit Inn /// /x
IKIXK,'<I fJif"ii,//i ,i

/.////
/ '. itinl

I! ilinl .S' lift' tin-
jin'nitK

nt' illff't'Xt'ff/on of ,n iritli ,1 i-Ht'l'i' nt' tin'

Xn'nllll "I-'I, l\ Itinl <
f

> /N tin-
jin'nit <lf il/f,'rXl'l-f/"ll <f III ll'itll ill, /.'[.If

of I'. tk''tl /' il/nl O /// //-/////"///<
I'liHJIIi/tlti-K

ll'itll
fi'X/it'ff

fa /i

ami N.
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Let /' ( Fig. 1 s
)
be any point with coordinates

//,,
let

/>
be the

ji >lar

df /', and let m In- any line through /' cutting //
in (

t

t and the curve

in /<' and .s'. 'I lien, it ~. are the coordinate s ot <
t
>, the coordinates of

// and .s' are //
i
+ \ .?. and

// +X p

r. where \
t

and X, are, the runts of

the equal ion
-

ibtained by substituting j'.= >/.-+ \*. in the e(|uation of the curve.

Flu. is

I>ut since o is on tin 1

polar of /', wi 1 liave ^
.",-<//,^ = "> ;ll| d

tlieri'foru X
A..,.

I>\' vj 1 t the thforcin is proved.

'I his theorem j^ivcs a method of
liiiflilig

the [tolar of /' when

the curve of second order consists of two st might lines intersecting

in a point f>
( Fig. li* ). Draw through /* tiny straight line /// inter-

secting the curve in the [mints J> and X, distinct from < ), and tind

the jioint ',',
the harmonic conjugate of /' \\ith respect to /,' and \.

l>v theoi'eiu \'III, i
t

> is on the j)olar of /', and bv theorem 1\ tlie

[tolar of /' passes through < >. Hence <) and <> determine the i'e-

([uired jmlar />.

EXERCISES

accordiiiLT to tlie nature of the eoellieieiils rr

'2. I'ruve that it' the triangle ol' rei'i-rein-e is composed of two tan-

gents to a conic and the ehonl of contact, the e<|iiat!i>n '! the conic is

'' -''-
J " <'!assifv tlie conic, jieconlin to the nature ol' the
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S. Prove thai th.' t riangle formed l>y the diagonals of any complete

quadrangle who-c vertices an- in tin- conic is a self-polar triangle.

4. Prove ;hat tin- triangle whose vertices are the diagonal points

iif a complete ipiadrilateral circitniscrilH-d about a conic is a self-polar

1 rianglc.

5. Prove tiiat a range of ]ioints on any line is projective with the

p.-iu-il
dt lines formed by the poiars oi t he points with respect to an v conic.

G. If /'. . /'.,, /'., are three points on a conic, prove that the lines
/'_./',

and /' /', are harmonic conjugates with respect to the tangent at /'., and

the line joining /'._.
to the point of intersect ion of the tangents at l\ and /'3 .

7. If the sides of a triangle pass through three fixed points while

two of t he vertices describe fixed lines, prove that t lie locus of the third

vertex is a conic.

8. The ei|iiatii'n j\ -f- A./',
= 0, where J\ and /, are quadratic pnly-

nomials and A is an arbitrary parameter, defines a //>'// <>f am !<:*.

Sketch the appearance of the pencil according to the different wavs

in which the conies f^
= and f,

= intersect.

9. Trove that through an arbitrary point goes one and onlv one

conic of a given pencil and that two and onlv two conies of the pencil

are tanurt 'iit to an arbitrary line. \\ hat points and lines are exceptional ?

10. Show that any straight line intersects a pencil of conies in a set

of points in involution. \\ hat arc the fixed points of the involution '.'

11. Prove that the polars of the same point with respect to the

conies of a pencil tuna a pencil of lines.

12. If the point. /' describes a straight line, prove that the vertex of

its polar pencil (
Ex. 1 1

^
with respect to the conies of a pencil describes

a conic.

I'A. Prove that the locus of the poles of a straight line with respect

to the ci inics of a pencil is a conic.

14. Prove that the conies of a pencil of conies which intersect in

four di>tinct points have one and onlv one common self-polar triangle.

ir>. Pro\e : t tin pole of the line at inlinitv is the center of the

e conic is tangent to the line at infinity.

1 <;. Prove that t lie tangents to a cent ral conic at the extremities of a

diameter a re i >:i ra

17. T'.vo lines nve i',:n / Hi/lit,' with respect to a conic if each [Kisses

:.:<<:_':;
-;

." pole of
' ; e other. Prove that cadi of two conjugate

diameters i- parallel to the tangents ;it the ends of the other. Prove

aKo that a ->' <

'

: iralle] chords are all conjugate to the same

'ted bv it.
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18. Consider a pencil of lines with its vertex at the center of a conic,

and an involution in the pencil such that corresponding lines in the

involution are conjugate diameters of the conic. Show that the fixed

lines of the involution are the asymptotes.

19. The foe i are defined as the finite intersections of the tangents

from the eirde points at infinity to any conic. Show that a real central

conic has four foci, t \vo real and two imaginary, and that the real foci

are those considered in elementary analytic ifeomet rv.

35. Classification of curves of second order. \Ve are now ready

to find the simplest forms into which the equation

2",<-V,
= ("-") (1)

can le put l>v a change of coordinates.

As before let us place \

CASK I. /> 0. T]ie curve has no singular points ( sj '}'} ). and

there can lie found an infinite number of self-polar triangles

(VII, ^ ->4). I'Ct one such triangle be taken as the triangle of

reference. Then, since the polar of 0:0:1 is the lint 1 .r,= 0, we

shall have, in the new equation of the curve, //
.,

= ".,.-" o. Since the

polar of () : 1 : is .ro
= 0, we shall have

#,.,= ".,.= " Since the polar

of 1:0:0 js./- = we. shall have ci = a 0. 'I'he eiiuation of the
1 12 1 > 1

curve is therefore ^ + a^ + a^= ()> (

.-,

}

\o one of the coellieients c/ n , //.,.,, <>.M can be /.ero, for if it were

the curve would have a singular point.

If the coordinates of the original equation of the curve arc real

and the new coordinates are referred to a real self-polar triangle

with a real unit point, the coefficients ",,, ".,.,. and <i.M are real. \\'e

may then distinguish two cases according as all or two of the si^ns

in ( l! ) are alike. I>v replacing ^
'',, ./',

by .r
t

we have then two

types of equations,
j-,

8 + r.? + ./;
= 0, (

:',
j

j-f + ./'.;

- .r: = 0. ( 1
)

'I'he first equation represents a curve with no real points and

the other represents one which has real points. It i-- obvious that

no real substitution can reduce one equation i<i the other. <)|
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course the second equation can lie reduced to the first by placing

./ /./,. which does not involve imaginary axes lnt an imaginary

value of the constant /.-.. Summing up, we have the theorem:

.1 i-nri'i- <>f xi'i-ii/iil ordi r tr//"Xi- t'fjimtivn hux real coefficients n<l

u'/ti'-li /nix ii" xiHi/alii/' />"i//t
IK "in' iif tim

tj/jK'x : an imayinary curcc

tin
1

1'iiiiiiffiin nt' H'/u'i'/i i'ii/i !' rfl ni-i'il t<> the Jonn (/>)i <nt<t <t rciil cnrre

tin' 1'ijittifimi "t' H'/i/i'/i 1'iin In' ri'i/iii'i'i/ tn tin' form (4). If n<> occmttit

I'K tii/,-1 it "f i/iHii/iiHirii'H flu 1

t'l/ttntinn <>f <ni>/ curr<> if ///, xc<'n<l order

d'itli no xiiiijiilnr /'"//it
am Ac rcdnct'd t<> tJu 1 form (

: >).

('ASK II. I> -': 0, hut not all first minors of /> are /oro. 'J'he

ciii-ve has then one and only one singular point ( ^ :'>:'>). This may
he taken as the point 0:0:1. Then a = a = a = i). The points

0:1:0 and 1 : : may be taken in an infinite number of ways so

that each is on the polar of the other. Kach of these polars passes

through H:0:l (IV, -M ). Since 0:1:0 is the pole of r = we

have n
a

" in addition to ".. 0, as already found, which is also

the condition that 1:0:0 is the pole of
./^
= 0. The equation of

the curve is therefore ., .,

irr; + ^,,^=0. (;>)

Neither of the coefficients n u or a.,, can be /.ero, for if it were,

the curve would have more, than one singular point.

Kquation ( o ) may be reduced without the tise of imaginary

quantities lo one of the types

.'Y +./;- 0, (I!)

./Y -./;: 0. ( 7)

Summing up, \\"e have the theorem:

^1 I-H/TI' if tin' Ki'i'niii/ on/!'/- jt'Jtnxc
i'i/iiiif

/mi JKIX ri'nJ <'"i'fl/<-iillfx ninl

irliii'li Jut* "in' xi iii/iil'ir jioi
nt ix inn' of lira

II/IH'S:
t/i'ii i niinjimi r>t xt ruiiilif

IIin x ri
I'i'i

xi iifi-il oif <</'"'//"/> (') "/' firn fi a/
xfril/';//lt //IliX

ri'/'/

4

i'xi'/l/i'i/

III l-llllllt/'lltl (7). If II" UlTil/l/lf IX (il/,i'/l if illllli/lllll I'll X ll I'll /-''I' "f

.s, ,-,,/!,/ "/-i/i r ir/tli "in' xhif/lif'tr }>"iiit
i-"iixixtx ">' tim utrti/i/ht liinx inti'r-

xii-tiin/ in tjnit [mint, n//'/ /'fx iii/mf i"ti /inn/ !'
juit in t!n> f<>rnl ('').

('ASI-: III. l> = 0. and all its lirst minors arc /ero. The curve lias

thru a lii f singular points, and its c(|Uation may be reduced to

.1

~
( l

( ^ ))). .1 <///''( i,t .v, -i-nilil iii'ill'l' ll'lth it Ill/I' "t XI t/i/lllil/' l>"ltltx

i-.nixixtx "t' tli, it /in.- f'l/.'i/i <l>nil,1<\
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EXERCISES

1. Applv tlic foregoing discussion to the classification of curves in

Cartesian coord i nates, using *'.,= as t he equal ion of t he line at in I'm it \ .

Where does the parabola occur in the discussion '.' (See Ex. '2, $ .'>!.)

2. Sho\v from the foregoing that if an ellipse or a hyperbola is

referred to a pair of conjugate diameters, its equation is = 1,
a- ft"

and conversely.

3. Sho\v from the foregoing that if a parabola is referred to a diam-

eter
* and a tangent at the end of the diameter, the equation of the

parabola is
//~

- - cr, and conversely,

4. Sho\v that if a central conic does not pass through either of the

circle point> at intinitv, it, has one and onlv one jiair of conjugate
diameters which are orthogonal to each other.

5. Show that if a parabola, does not pass through a circle point

at infinity one and only one pair of axes described in Ex. -1 will be

orthogonal. Write the equation of a parabola tangent to the line at

inlinit v in a circle point.

36. Singular lines of a. curve of second class. Consider the curve

of second class defined by the equation in line coordinates

P>v ^ '}- the singular lines ot this locus are del'uied bv the

equal ions

-'I
,..",

+ '.,..''., +-
'.,;",

=
' (-)

-',.",+ ./.,.,".,+
' .,..".,

= "

Let A, called the iltwftintmtnt ot the curve (1 ), be dctine(l bv

the equation

A- .l!.! .f Jj

Tlioro are tbeu tliree cases in the discussion of equations ("J).

('ASI-: I. A '-<). liquations ( i! ) have no solution, and the curve

has no singular line. This is the -general case.
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CASK II. A=0, but not all the first minors of A are zero.

Equations c2) have one solution, and the curve has one singular

line. Let this line by a change of coordinates be taken as the line

0:0: 1. Tin' derive of the equation will not be changed, but in

the ne\v equation we shall have A
13
= A n ^

= A.^= 0. The equation

therefore becomes .,

A n t<~ + - A
l
..n

}
u.,+ A.,u.,= U,

which can be factored into two linear factors. These factors can-

not be equal, for if thev were we should have A : A
,

= A : .1.,,, and

equations (-). written for the new eijuation, would have more than

one solution. Kach of the factors of ('}) represents a pencil of

lines the vertex of which lies on the line ./-
(

=
; that is, on the

singular line of the locus of (1). Equation ( 1 ) is the line equation

of the two vertices of the pencils represented, and the singular line

is the line connecting these two vertices.

CASK III. A = 0, and all its first minors are /.ero. Any solution

of one of the equations (-) is a solution of the others, and the

curve has a pencil of singular lines. If bv a change of coordinates

that pencil is taken as the pencil = 0, we shall have in the new

equation ( 1
) A = A =

-/...,= A.,
3
= A = 0. and the equation becomes

j"=0. Hence in this case equation ( 1
)

is the equation of two

coincident {joints.

Summing up. we have the following theorem: A rttri'i' <>f t/n-

,sv "//(/ flit** liax m
iji

ni'i'iil nn ><i)it/i(I<ir Inn-. It it J/<ix <>nt' tt'inifnlar

I tin- it rnnxtxtx "f t ii'n ilist'un-t jmiittx /////(//
"// tJult line. If it 1t<tx <t

!
,(<!! "f .s////////i//*

/im-x ft f/y/.v/x/x i

if t/it- Cfrt<'.r <

if tJtnt jifiifil <{<>ti/>l//

f.'.-lc-.n.-.L

37. Classification of curves of second class. I>y -\'2 the limit

{mints of intersect ion of two lines of the locus

are given bv the equations

A
t,.it.,+ A



CURVES OF SECOND ORDER AND SECOND CLASS (j',1

CASK I. A~ 0. Equations (-) can be solved for n^ //,, and ?/..,

and the results substituted in (1). But by aid of equations ('_'),

equation (1) can be replaced bv the equation

The result of the substitution is therefor

.= 0,

which may be written ^''a-'V''/.-- (l
< (

~>
)

where
<t^_

is the cofactor of J a.
in the expansion of the dctermi-

nant A.

This is the curve of second class enveloped bv the lines which

satisfy equation (1). It appears that it is also a curve of second

order. Let

it <! (I
i ; i -o Ja i

be the discriminant of
(

~> ). 'I'hen

A
D- A= A =A 3

I

U U A

and 7>--=A-^ <*.

\Ve have therefore the following result: .1 currc "f .scc//// r/r/.v.v

//v/// it" singular It/if /.s- ^/,vo /< <-nri'<' t' xn '//./ <>,</,> ////// //" Kinijuhir

ji'iint. The converse theorem is easilv pro\'ed : .1 ftirrf >>/
x, -<-//,/

n/'ili'/' icitli iin xtnf/nl(tt' ji'//'nf
/x (//>'/ </ i'i//'i'i' at' x. --"//I/ /7'/xx ^vV/i y/"

x/it'/ii/iir ////(-.

Since the simplest equations of the curve ot second order are

./f +./;-./; ".

the simplest e(|Uations of the eur\e of second class arc

a{+ /<:+ it: ".

//,' f li : i<

"

U.
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('ASIC II. A I', but not all its first minors art- zero. Equations

('2) have no solution, so that no point equation can be found for

the locus of tin- limit points on the- lines of equation (1 ). In fact,

we have already seen that the limit points are two in number

only, the vertices of the two pencils of lines defined by (1). The

simplest forms into which equation (1) can be put without the

use of imaginary coordinates are obviously

uf+ i<:= 0,

I/*- ,/;= 0.

CASK III. A= 0, and nil lirst minors are equal to zero. We have

already seen that the simplest form of the equation in this case is

u; = 0.

38. Poles and polars with respect to a curve of second class.

Equations (-)- ^
;>7, can be used to establish a relation between

any line /r, whether or not it satisfies
(

1 ), vj :>7, and a point .>\
tie-

lined by these equations. The point is called the pli' of the line,

and the line is called the j><Jnr of the point with respect to the

curve of second class given by equation (1), o7. The following

theorem is then obvious :

To /in// llni' i>f tin'
plitiif I'orrfuptntdn a dixlinrt

j>l>',
lut t<> <tni/

point corresponds <i distinct pn/nr u-J/i'/i <in<l "///// irhi'ii tin' il/xcrt't/i-

imtnt nf tin- i-nri'f nf x,',-unil cluxx tlm'x /i"f rditixli.

This relation is dualistic to that of ^ ->4, and all theorems of that

section can be read with a change of
"

point
''

to
"

line,"
"
pole

"
to

''polar,' etc. We shall prove in tact that /// riixc uf <t I'urve tif wnn<1

urdt'i' nn<l xt-coml r/i/.s-x irithmit xitii/H/iir i><>int
<>r Hiif tin- dt'iihittiina "/'

puff* and
i>nl<ii'x

hi ^ o4 a/nl sj 3S cnfm-idi-.

This follows i I'oiu t he fact that t he cur ve of second class defined by

V.I,////, I*

*/

is, when A '- 0, the curve of second order

win-re <i
ik

is the eofaetor of .l
iX

.
in A. Now. if equations (-). s : >7,

are sol vet 1 I'm' ii
^

a
...
and // , there I'esult the etj nations ( 1 ), vj :'> 1, and

t he t heoreni is i in i\cd.
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In case a curve ot second class consists ot two points, bv a

theorem dualistic to IV, ^ o4, the pole of any line lies in the

singular line, which is the line connecting the two points. It mav

be found by means of a theorem which is dualistic to VIII, ^ )54, and

which mav be worded as follows:

//' it II
If pn'tnt M tX iitkt'lt "il ,1

li/tt
1

i>,
ami r ami x <in' tin' Ituctt

thruwjh M Muni/iny t<> a citrt-i'

iif' x,-<-<>n<l <-/iixx, ami
<{

ix tftf litif

joiniinj M in tin- j,lc nf p, (/,,

It/ii'x
i>

iiinl Y '''''' htirinoinc i'nit-

jui/ittix irith
ri'xjh'i't

in r ami x.

This theorem is illustrated in Fig. l>0, which also suggests

the construction necessary to find /' the pole of
]>,

since /' is the

intersection of </ and the line <><>'.

EXERCISES

1. If the three vertices of a triangle move on three fixed lines and

two of its sides pass through fixed points, the third side will envelop
a conic.

2. A nuiL,
re of eiuiies is defined hv the equation _/'+ A/", = 0, where

J\~- and _/!,-= are the equations in line coordinates of two conies.

Diseuss the appearance of the ranp'.

3. 1'rove that there is in general one and oidv one conic of a raiiLjv

which is tangent to a ^iven line and two and oidv two conies of a

ran.ife which pass through a ^iven point. \Vhat are the exceptional lines

and points '.'

4. Prove that for a ^iven ran^e all tangents through a fixed point,

form a pencil in involution with itself.

5. Prove that, fora t^iven ran^e of conies the poles of a tixed Mrai^ht,

line form a ran^e of points.

G. If ;i straight lint! in Ex. a turns ahoul a jioint, show that the lia^e

of tlie ratine ot its [>olar points envelop a conic.

1. Prove that the centers of the conies of a ran^e lie on a straight

line.

8. Prove that the conies of a ran^e with four distinct common

tangents have one and onlv one self-polar triangle.
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39. Projective properties of conies. We shall prove the following

theorems which are connected with the curves of second order and

involve projeetive pencils or ranges.

/. '/'//' point* f intersection <>t correspond/at/ ////ex "/' tiro project ire

jn'ticilx //7//c// i/" n<>( /Hire {( cuiinnoii vertex </ener<ite n curve of second

"filer ii'Jticlt piixxes t/ti'Hlii/h tin' vertices of the pencil*.

Without loss of generality we may take the vertices of the two

projective pencils as A( : : 1 ) and ('(1:0:0) (Fig. 'Jl) respec-

tively and mav take the point of intersection of one pair of

irrcspoiiding lines as />'(0: 1 : 0). The

two pencils are then

./j +*./-.,=

;uid sa +\'j-3 =Q,

where \' - - The point /? lies on
y\ + 8

the line of the lirst pencil, for whicli

\ = 0, and on the line of the second

pencil, for which \' = x. Since these are

corresponding lines in the projectivitv,

we have B = 0. Then ft and 7 cannot vanish, owing to the condition

a& fty
^- 0. Now, if jc : j\ t

: ./
-

.

t

is a point on two corresponding lines

of the pencils, we have X=- > X'-
,
and hence

r
a

yj-^j'.,
-

fi.i\si\, +
a./'.j.rj

=0. ( 1 )

The point j^: ./.,: r.
s

therefore lies on a curve of second order.

Conversely, if
//j

:

//.,
:

//.
is a point on this curve of second order,

I>iit the line joining y. to A has the parameter X= '

'. and
//

the line joining //. to />' has the parameter \' - ~
- and conse-

quently X' Hence the point //,
is the intersection ot

two corresponding lines of the two projeetive pencils.

1 hat the curve ot second order with the equation (1) passes

through ./ ami (' U ol\ioiis. Hence the theorem is pm\ed.
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If a -=- the curve (1) reduces to the two straight lines .'=')

and JJ\ $.t'
= 0, and the two pencils are in perspective ( sj 1'i).

Kquation (1 ) inav lie written in the more symmetrical 1'orm

//. T/t>' hnt'x count'*-! nt<j i'n/'t'f'i<j>mtiltn</ jmt/ifx <>t tw<j }irji'rttvt'

/v//</r.v tcJutJi if" H"t It'll',
1 the xiiuii' l"ix,' eni't'lun it i-nrri- ut XCCO/M/

rlaxx u'hich ix titiii/i nt t<> thf Intxi-x (' t/t<' tu'n riiinjfx.

This is dualistic to 1. \\'e mav take the bases of the two ranges

as n( : (I : 1
) and r(1:U : (J) ( l-'jo-. -2'2) respectively, and a line

connecting two pairs of corresponding points as /M (| : 1 : "). The
line equations of points on the

two ranges are then

u + \n
t>

and M. (
+\'M

8 =0,

where, as for I,

>i\ -f- tf

7\

'1 he lines connecting' corre-

sponding points then satisfv

an ei
jiiat ii 1:1 of the form

< // // -i- i- u a -f- i- a u 1

1.

( 'oiiverselv. anv line satis! vin^' this eijiiation is a line connecting

eoi'i'cspoiid ni'j; points ot the two ranges.

\Vhen a ~ (\ the eipiation factors into // ( > and y>/
--

tfu = 0,

and tin- t\\'o ranges are in perspective.

///. Ai> if f"'"
jxitllfx

"II il I'll/'i'i
';/

Kt'i'nUi? "/'/'/' U'ttJli'llt XtHi/liltlf

Unfa until I,,
1 unfit its fin' ri-/'f/i-,'i< nt tu-ii i/<ni/''i///t</ /

in-ilx.

No three points ot the curve lie in a straight line. Hence anv

three points on the curve mav lie taken as the vertices ot the

coordinate triangle AH<\ The equation of the curve is then of

the tol'lll ,, , ,- _j_
,. ,- ,. j_

,, ,. ,.
-
0, ( f )

no siii"'ular point.
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The equation of any line through A is
.^ -f- X./-

i>

= and that of

anv line through ("is .r,+ X'./-.
f

= <>. If these lines intersect on (4)

we have , \ ,.

The correspondence of lilies of the pencil with vertex A and

those of the pencil with vertex (' is therefore projective. This

j
in i\ es I he t heorciii.

IV. Anif tico t<unjent I/in 'ft (D <( currc <if xeetind clfixx without aim/ulttr

point* niiti/ he tiihen its tin' h<ise# of (tt'n prujectice yencratiny ntnyen.

This is dualistie to theorem III.

V. If itni/ point i

>f it I'Hi't'e <>t nei'<>)nl order ivithuut xini/ular pointx

ix eonni'fteJ icith uny four points /'/t //>< <-it/-r<-, tin' r/-</*.s- r<<ti of the

f'*ur I'o/tni'i'fttii/ ///h'x /x <'<>tist<t/tt _/"/ ///, cnri'i'. ]t anij dnnji'itt line to

it currf i

>f Kfcund flit*.* icit/i'iiit xini/nl<ir /tticx tx intcrsi'cti'd /<// (/////

f"iir tnnii>'iitx, t/ie c/v/,vx rntto of the four points of intersection its

constant for the i-nrre.

4'his is a c-orollarv to theorems III and IV.

VI. (hie 'tint on/// n/ii' riii'i'e <>t xi'i-ond <>r<li /' am In'
p<(stn'<I ttiromjh

ti/'i piiints, no Jniir oj tchich />< in <i xtrnii/ht line.

Let the live points he //. /', /.'. /,', and /,' ( Fi-jf. -'}*).

l-'roin /', which cannot he in the same straight line with /.', /.', and

/,'.
draw the lines /'/', /,'/!, /,'/': and from /.'. which also cannot he

eollinear with /,', /.',
/,',

draw /.;/;, ///', A'/,'.

4 hen there exists one and oiilv one pro-

jectivitv ( I. ^ 1 >
) hetweeli the pencil \\itll

vertex
/,'
and that with vertex /' in \\hich

the line
/,'/_' corresponds to A'/!, the line

/;A; to /,'/;. and the. line /;/; to A;/;. The

intersection oi corresponding lines oi these ^'

project ive pencils determine a curve ol

second order through the live ^iveii points. Since anv two points

on the curve ma v he taken as the vertices of the general in;_;' pencils,

onlv one ciii've can lie passet] through the points.

VII. <hn- ilnJ i.nlil o/t,' ,-ni'l'i' of xrrninl flilxs i-<lll /"' <-oH*/ rtlfd'tl

t<iiii/i'/if tn ///- liin-a ii" four nt' irhii-h iin'i't tn << point.

4'his is dualist ic to t heorcm \' I.
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VIII. Pascal's theorem. If <r /n-j-<ij/n /x ///*, ///'/ /// ,-n >>-,' <>?

.XVVM//I/ ii/-i/i T. till' jmintft
"I I llttTXi'i't l<ilt "t

njij)n>ilti'
ts/i/i'X III' tl i(

atrtii'jht ////.

l>v a hexagon is meant in this theorem the straight-line

figure formed by eonnectinif in order the six points /'. /.!, /'. ]\,

/.', /,',
taken anywhere on the enrve of second order ( !

i<_^. -!)

The opposite sides are then
/,'/.!

and

/;//, ./,:/'
and //,;. /;/; and

/.;/;

respectively.

\\'e shall first assume that the curve

is without singular points. Then the

points /,', /.', and /' do not lie on a

straight line and may be taken as the

vertices of the triangle of reference.

Let /;
be the point (<) : : 1), /,'

the point (0:1: <>), and // the point ;>
l

(1:0:0). Then the equation of the

eurve. is, by (
"1 ),

Let /.! have the coordinates
//.,

/,'
the ciinrdinates ?., and /.' the

eoi'irdmat es //.. Then, since the three points /'.
/,'.

and
/,.'

lit

on the curve ( I ), \\c have

1 1

CO

1 1 1

//', // ir

lines /.,'/,' and /.'/.' intersect in the point
' '

: :1 and the lines
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/'/' and /,'/' intersect in the point !:=: The condition that

these three points lie on a straight line is

= 0,

which is readily seen to be the same as equation ((I).

It the curve of second order consists of t\vo intersecting straight

lines, the theorem is still true, l>nt the proof needs modification.

When the points /', /.', and /.' lie on one of the straight lines

and /.', 7
4
', /' lie on the other, we have the theorem of Pappus

(VII, $>')) Other distributions of the points on the straight

lines arc- trivial.

IX. Brianchori1

s theorem. Tf lif.r<i<i<>n ?'* <-ir<'U)n*<-ril>t'<1 <t!ntf <i i-nrrc

nf second cA/xx, t/n 1 lines connectui<f opposite vcrtn'cx nii'i't in <> point.

This is dualistic to VIII, and the proof is left to tin- student.

EXERCISES

1. Trove that the center of hoinology (see Ex.0, $ .">0) of two jiro-

jective pencils of lines is the intersection of the tangents at the vertices

of the pencils to the conic generated bv the pencils.

2. I'rove that the axis of homology (see ICx. 10, :j,")()) of two pi-o-

jcctive ranges is the line joining the jioints of contact of the liases of

the ranges with the conic generated bv the ranges.

3. Show that the lines drawn through a fixed jtouit intersect a conic

in a set. of points in involution, the fixed points of the involution beni^

the points of contact of the tangents from the fixed point.

4. I'rove that if two triangles are inscribed in the same conic they

are circumscribed about another conic, and converselv.

5. I'rove that if a pentagon is inscribed in a conic the intersections

of two pair> iif nonadjaceiit sides and the intersection of the fifth side

and the tangent at the opposite vertex lie on a straight line.

6. State and prove the dualistic theorem to Ex. ~>.
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7. Prove that if a quadrilateral is inscribed in a conic the inter-

sections of the opposite sides and of the tangents at the opposite
vertices lie on a straight line.

8. State and prove the dualistie theorem to Ex. <>.

9. 1! a quadrilateral .{/!''/> is inscribed in a conic and /. is the

intersection of the tangent at .! and the side li<
'

, l\ is the intersection

of the tangent at /.' and the side A/>, and M is the intersection of the

sides A/: and ''/>. prove that /., K, and M lie on a straight line.

10. State and prove the dualistie theorem to Kx. S.

11. I f a t riangle is inscribed in a conic, prove that the intersections of

the tangents at the vertices with the opposite sides lie on a straight line.

12. State and prove the dualistie theorem to Kx. 1-.

13. Prove that the complete quadrangle formed by four points of

a conic has. as diagonal points, the points of intersection of the

diagonal lines of the complete quadrilateral formed bv the tangents

at the vertices of the complete quadrangle.



CHAPTER VI

LINEAR TRANSFORMATIONS

40. Collineations. A collineation in a plane is a point trans-

formation (J5
f>

) expressed by the equations

( 1 )

If the determinant V
A

is not equal to /ero, these equations can

be solved for r, with the result

(2)

where A
<k

is the cofaetor of n
ik

in the expansion of ^ and where

[,<
-0.

If the determinant j" a .

[

=0, equations (2) cannot he obtained

from (1). For this reason it is necessary to divide collineations

into two classes :

1. Xonsingular collineations, for which ]

a
ik

.

^ 0.

'2. Singular collineations, for which <i
tl

.

= 0.

\Vc shall consider only nonsin^ular eollineations in this text,

though some examples of singular collineations will be found in

the exercises.

It is obvious that for a nonsingular eollineation r
t

cannot have

such values in ( 1 ) that
./(

r.' = j-'
3

--= 0. Hence bv (1 ) anv point./;

is transformed into a unique point .r'r Similarlv. fVom ('2) any

point ./' is the t ransformed jioint of a uni|iie point ./\.

Consider now a straight line with the
LMJ

nation

;/
i

.r
i

-(- ;/,.r, -f ",-/.,=
0.
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All points r, which satisfy this equation, will be transformed into

points j-[,
which satisfy the equation

ntf + i/X + "X=o 1

where, by ('2),

It appears then that any straight line with coordinates
*/,

is

transformed by (1) into a unique line with coordinates //. Also,

equations (3) may be solved for ", with the result

-"-.X+'vJ,

\>t,= If, .,11 4-

from which it appears that any line is the transformed line of a

unique line.

Equations (8) express in line coordinates the same transforma-

tion that is expressed by equations (1) in point coordinates. For

it is easy to see that by equations (-5) any pencil of lines with the

vertex r, is transformed into a pencil of lines with the vertex ./. and

that the relation between .r and .r' is exactly that given bv equa-

tions ( 1 ). Eq nations (
> ), therefore, which express a transformation

of straight lines into straight lines, also afford a transformation of

points into points in a sense dualistic to that in which equations (1 )

afford a transformation of straight lines into straight lines.

We will sum up the results thus far obtained in the following

theorem :

I.
/>'//

a )>)ix/)///i//<ir <'<>lli)icrttiil in ii
jiliith- i'r,'rij )><>hit

fx trinix-

fufnif'il hif'i <i
unii^ne i>i>it ini</ > >;/!/ xtruii/ht Inn- //if" *i

tnn<jii,'

nfrtiit/Jit Jin i'' itrni, ivwrprm'lifi t'l'i-ri/ >i>/if /x /// twimtf'iriHi'il />/'iif
>' ?

in>- f/n- trtnisnrw<'<I tin>' < iini<><>'

('misider now a eollineat ion I! by which any point .i\
is trans-

formed into the point ./, where

p.r(
nn J'

}
+ ",-'':+ ",.r^i'

and let //., be a collineatiou by which any point ./[
is transformed

into .r", where ,, , ,

, , ,
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Thru tin 1

product A'., A' i* a substitution of the form

Tf" --

'',,./, + <',.,'+',:.':.'

which is ;i collineation. Hence the product of two collhieations is

;i collineat ion.

Moreover, it // is as above and A', is of the form

the product A' A' is ..

r.r = .r

which is the identical substitution. Hence in this case A', is the

inverse substitution to A^ and is denoted by A', '. Our work shows

that the inverse transformation to a collineat ion always exists and

is itself a collineat ion.

These considerations prove the following theorem:

//. The totality f HdHxinj/iilar collint'fitinnn t/i <i
}>/</>/< form <i

<;rni>.

\Ve shall now prove the following theorems:

///. //'
/,'. A!, /,'.

/,'
ore <nii/ f<>nr itroitrarit ij axxunti'il pointx, n three

of u'hli'h iii'i' on tin' x/tnic Htrtit'i/ht line, <nnl
![', /.!', /.'',

/,''
are nlxn

t'niir it rl>it raril ii (iMiunctl pointz, no three of u'h'fJi lie mi <t xtrniijht

line, f/iere e.risfx one an*! null/ one auUineation
/'//

nieunx of irlii<'}i /j ix

transformed into
/,'',

/' info
/._!', /_'

Into /.!', </n<l 7
4

*

into /
4
''.

To prove this we will first show that one and onlv one eollinea-

tioii exists which transforms the four fundamental points of the

coordinate system, namelv ./ (0 : : 1 ), /* (0 : 1 : ), f'( 1 ; ; ), ami

/ (1:1:1), respect ivelv, into four arbitrarv points /' ( a, : a., : n., ),

/.' ( /3
{

: ft.. : fi.. ). /.; ( 7, : 7., :
7,, ), and I\ ( 5, : &., : 8, ), no three of which

lie on a straight line.

liv substituting in equation (1) the coordinates of correspond-

ing points, remembering that the factor p mav have different values

for different pairs of points, we have the following equations (| ut

ot which to determine the coefficients <i
it

:

Pi'
1

-- '":::

p ?> = n -f"l I 11
'
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1>\ substitution from e^uat ions (">) in equations (ti) we have

p 'i -f- p rf -\- p 7 p 6 = 0,r
i i

'

i -'
i

' r ;
1

1 "41

which mav IK- solved for p : p,: p.: p 4
. Since no three of tin- points

/'. /!. /'. /
4

'

lit- on a straight line no dflcnninant of tin- third

order funned from the matrix

can vanish, and hence no one of the factors p. can he zero. The

values of p . p,. p.. and p
( luivilljjf

thus hecii deterniiiied exee[>t for

a constant factor, tin.- values of the coefficients ii
it

can he found

from (.)) except for this same factor. Hence the collineatioii (1)

is uniijiiely determined, since onlv the ratios of <i
ti

in (1) are

e^selit lal.

Let it lio\v he required to t I'ansfol'lii the four points /,', /.'. /..'. /
4
'.

no three of \\hich are on a straight line, into the four points /,'',

/.!'. /'', I',', respect i\cl\'. no three of which are on a straight line.

As we have seen, there is a iini(|Ue collincution // \vliicli transtonns

.1. //.. (\ I into
/,',

/',. /'. /
(

'

respi'divelv, and a unique cnllinoa-

t ion I,' which transforms ./. />', (\ 1 into
/,''. /!'. /''. I\' rcspecti\'el\'.

Then the col luicat ion 7,^
'

(theorem II) exi>ts and tran^tornis

/;. /'. /;. /; into ./, /'. <', 1 resjiectively. The product // //
;

'

is

a colliiieation (theorem II) \\hich transforms /.'. /'. /.'. I\ into

/,''.
/.:'. /''.

/,'' respectively. Moreover, this is the onlv collineatioii

\\hich makes the desired transformation. Fur let /.' he a collinea-

tioii which does so. Then /,',
'

/,' transforms /,'. /', /'.
/,'

into

.1. /', (
', I respect JVelv. Ilellce

Thi- estahli-hcs the theorem. It i- inn |H'eessar\ that all the

points /;. /'. /;. /; should he distinct from the points /.''. /''. /:'. /;'.

In the special case in \\hieh /,' is the same a^ /''. /' the same as
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/!', 7.J
the same as /!', and

/,'
the saint 1 as 7

4'', 7^
= 7i'o and 7t' is

tin- identical substitution. Ilt-nce we have as a corollary to the

above theorem:

IV. Anif i'i>/fini'iif/'"H tr/f/i
_

fun,' fj.n'd jx'intx tin tJo'i'c of which nre In

tin' xilnh' Ktl'rtii/flt Inii' /x tin' 'nl, n/ii'il/ xn/ixf/fiiti'Hi.

V. A>f nnnxinijuliir collincut inn entalilixhcs <t project ivity between

ttic points if tic<> correspond!n<f r<tni/ex and t/i>' line* <f tim corrt'upnnd-

in<! I'eiK'ilx,
mid <ni// xi-h productivity }// Ic established in an infinite

<>
iriii/>* I// <i nnnsini/ulur coUincation.

'I'o prove the first part of the theorem let the pointy. l>e trans-

fonned into >/'{
and the jioint -r,

be transformed into z( by the collinea-

tion (
1 ), so that ,

'

, ,-11 ,- 3 ,
i 83'

Then /+ A.?. is transformed into , \\hcre

whence (

where X'=-
P,

This establishes a projeetivity between the jioints of the range

//,. + X^
(

. and those of the range //[ + XV. \\\~ tin- use of line coordinates

and ci juat ions (
'>

) the proof mav bi- repeated for the lines of a pencil.

To prove that there are an infinite number of nonsingular col-

lineations which establish a given projectivity between the points

of t\\'o ranges, it is onlv necessary to sho\v that there are an infinite

number of collineations which transform anv three points 7', (J, R

Iving on a straight line into anv three points 7''. (,>', 7<'', also on a

straight line, and applv III, vj
1 ">.

To prove this, draw through /> any straight line and take ,V and

'/' t\vo points on it. Draw also through Ji' any straight line and

take .s" and 7'' anv two points on it.

Then bv theorem III there exists a eollineat ion which trans-

forms the four points /'. o, ,s', '/' into the four points 7'', (/, S', T',

and this eollineat ion transforms // into /,''. Since ,S', 7' and .V', T'

are to a lar_n- extent arbitrary, tliere ai'e an infinite number of

requ ired eollineat ions.
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If it is required to determine a collineation which establishes a

projectivity between two <_
r iven pencils ot lines, this niav he done

bv establishing a project i\ ity between two ranges, each of \\hich

is in perspective with one of the pencils. Since this niav be done

in an infinite number of ways, there are an infinite number of the

required collineations.

41. Types of nonsingular collineations. A coll ineat ion luus a //./r</

[mint when
.// .r, in (-([nations (1), ^ I". The fixed points are

therefore given by the equations

(- P )',+ ",,'; --",/: =0

The necessary and snilicient conditions that these equations have

a solution is that p should satisfy the equation

Similarly, the fixed lines of the collineation are

equations "~ ~

(_')

b the

and the necessary and sufficient condition that these equations

have a solution is

(I)

Equations (-) and (-1) are the same and will be written

Now let
p^

be a root of (."">). Then
f.

hypothesis (t
lk

j

<'- 0. The rout
p^

is a double mot win

,,
'(t p <i

t (p \~ -^ ^i -' 11

''^ ",, 'P, ",;,

and it is a triple ro<>t when

rcpt)=-j [(%-/>,)



S4 TWO-DIMENSIONAL (JEOMETKY

We mav now distinguish three cases:

1. When all the lirst minors of the determinant ^(/j ) do not vanish.

Equations (
1 ) and (

-I
)
have each a single solution. The eollineation

has then a single fixed point and a single fixed line corresponding to

the value p r The root p } may he a simple, a douhle, or a triple root

of (;">), according as equations (i!) and (7) are or are not satislied.

'2. When all the lirst minors of./'f^) vanish, hut not all the

second minors vanish. Equations ( 1 ) and ('-\ ) contain then a single

independent equation. The eollineation has then a line of lixed

points and a pencil of lixed lines corresponding to the value
p^.

The root p l
is at least a douhle root of (>) since equation (t!) is

necessarily satisfied, and it may or may not he a triple root.

o. When all the second minors of ./'(/>) vanish. Equations (1)

and
( )) are satisfied hy all values of

.r,
and n. respectively, and

the eollineation leaves all points and lines fixed. The root p is then

a triple root of (
">

) since equations (li) and (7) are satisfied.

From this it follows that <i i-allini'ittinn Ji<is ax nnmi/ //./v/ l/'/n-x KX

//./>'</ point* iiinl its ntnnif pencil* "/ fij'cil Inn'* <ix Inn's of fl.i'i'</ points.

From \'l it follows also that /// c/v/y/ //./*</ lint 1 lies <tt least one

fl.iiil point inn/ f/i'if t/i/'oni//i fViTtj //./>-/ point </<n'x <it li'/ixf on<' li.n'ij

lim . Tin' lini' i'"ii m <( tioj t/ro fi.t't'i/ points is //./</ itinl tin' point i-utn)it<>n

to fi./i'i/ tint's is (l.i'i'iJ.

\\'e are now prepared to classify collineations according to their

fixed points and to give the simplest form to which the equations

of each type mav he reduced. We will first notice, however, that

if the point .r
f
= 0, ./-. = 0, .r

t
= 1 is fixed, then hy (1), 40,

(i
it
= ii

jk
=

; and if the line
.i\.

-- is fixed, then <tu = <<
ki

--- 0.

.1. Ci'lliiH-ntinHK n'ith nt /xist //,,;>' ti.ru/ points not in tin' s,t//i>'

sf/'dii//if 'inf. Take the fixed points as the vertices J, /A (' of the

triangle of reference. Then the eollineation is

p.i\
"
n .' P

p.l-',
- - '/ /
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TYI'K I. p.r{
=

'/./',,

The collineation has only tin- fixed points .1, //, (' and the

fixed linrs .I//, />V, and '7'.

Tvi'K II. p.i\
.rr

p.i''. '/./'.,,

P'.'
: :

'-''a-

The eollineation has the lixed jioint .1. the line of lixed points

/''', the fixed line I!C, and the peiieil of lixed lines with vertex . I.

It is ealled a li">//ol"<///.

TYI'K III. p.r{ -./'

p.r.
= J's .

All points and lines are lixed. It is the identical transformation.

//"/ in t/n' xi/iiif xtrnii/tit line. \\ e will take the two lixed points

as .1 (11:0:1) and <

'

( 1 :
<>

:
<

)
of the triangle of reference. The

collineatioii has at least two distinct lixed lines one of which is AC.

The other must contain one of the fixed points, and we will take

it as lie (./-._- 0). The eollineation is then

pj\
=

,,.',+ ".'.,,

p. >''.,
-

(/.,.,.>'.,,

P-'a
=

":;,r'V

Here '/ - " or we should have case ./. \Ve shall place <7
,

-= 1 .

The equation <
.">

> is no\\" (<( p)(ti it
-

p )('/.,- /D )
-- ( t. Placing

/j ",, \\ e have as the equations to dcterniine the corresponding
lixed point

(",,-0-'-,+ .'-,= ^

( ".,, )>'..= () -

Since 1>\ hvpnthesis everv fixed point lies on ./
-

0. \\ e have

'/
u '',,. It is left Ulldeterillilleil \\ het her "'..is or i> Hot eijlial to ,;__.

I lellce \\ e ha\ e t\\'o lleW t V| M'S.



SG TWO-DIMENSIONAL GEOMETRY

Tvi'K IV. p.r[
= <u\+ J:,,

Tin- eollineation has unly the fixed points A and (.' and the

lixed lines .1 (' and lit '.

TVIM: \".
p.t-(

= tu\ + i-.,

p/, = tu-.,,

Pa = "JV

'I he eollineation has the line of lixed points AC and the pencil

of lixed lines \vith its vertex at < '.

In either Type I Y or Y the point /' may he taken at pleasure

on the line /'''.

('. < '"///in 'dti'inx tc/'tJi ">tli/ fine fixed j>ittt. Take the fixed point as

<' (1:0:0). Tin- eollineation has also a fixed line whieh must

pass through <
'. Take it as 1>C (j- =0). The eollineation is now

i o \ 3 -^

p.r(
= u uj\+ ,,.',+ <*

13
r

3 ,

p.f',= a.,,j\^ a.,.^s ,

Equation (
.")

) is now ( p ) ( </.,., /?) (
</

..., p )
= 0, and since

bv hypotheses (' is the only lixed point, we have (i
n =''.>., <'

a .,-

The point A (0:0:1) taken at pleasure is transformed into

A' ( -/^
: rr, .:</.,), and if we take the line A A' as

j^
= 0, we have

ti=(). The eoeftieients a
,
and <;, cannot vanish or \\'e have the

previous cases. We mav accordingly replace j\ t
by -

"L and j'
3 by

and have, tinally,

K VI.* p-; -,/./-! 4- r,,
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EXERCISES

1. Find tlic fixed ]>i>mts and determine tin- type of rollint'iltion to

which each of the following t I'ansi'orniat ions in ('artesian coordinates

U-long : (</) ;i translation, i
i>

) a rotation ;il>out a tixed point, i <
i a reflect ion

on a straight line.

'2. hetcrmine the group of eollineat ions in ('artesian coordinates

which leaves the pair of st raight lines j:~ i/~ invariant and discuss

the subgroups.

3. Are t \vo eollineat ions with the same fixed points always commu-
tative'.' Answer for each type.

4. ('onsider the singular eollineat ions. Trove that there is always a

point or a line of points for which the transformed point is indeter-

minate. "\Vc shall call this the singular point or line. If there is a

singular point, every other point is transformed, into a point on a lixeil

line which mav or may not pass through tin; singular point. If there

is a singular line, every point not on the line is transformed into a

fixed point which may or may not lie on the singular line. J'rove these

facts and from them show that the singular eollineat ions consist of the

following t \ pcs :

I. One singular point /', a fixed line j not through /', two tixed

points on /i. ,

ps\= ''.>

p.c',
-

(/./'.,,

IT. One singular ]ioint /', a fixed line not through /', one tixed

point on n.

P-'-
-.

I \'. ( >ne singular point /', a fixed line
/>

t h rough /', one jioint of/, fixed.

P-''\ >'.',,
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V. One singular point /', a fixed line/; through /', no point of j> lixed.

p-i'i
=

>">,

p.r'2
= xa ,

P-''a
() -

\"I. A singular line j>, a fixed jtoint /' on p.

\'ll. A singular line j/, a fixed point/' not on
j/.

42. Correlations. The equations

K='Vi+",/.+ "i/a<

K= Vi+Va* Vs C 1 )

/
>< ==

";H-
/"l+'V,+ <W

\\-here ./. are point coordinates and M' are line coordinates, define

a transformation of a point into a line. Such a transformation is

called a cnrrflntinn. As in the ease of eollineations, we shall dis-

tinguish between noiisingular and singular correlations according

as the determinant a
ik

does not or does vanish, and shall consider

only noiisingular correlations. Equations (1 ) can then be solved for

j; with the result ,
, , . ,

where .l
i(l

. is the cofactor of </a . in the determinant <i
il: \. Every

straight line u
t

'

is therefore the transformed element of a point ./,'

Consider now the points of a line given bv the equation

ii j- 4- '/.,-''., -4- ^...r,= *K

\\here n
i
are constants. l>y(-) these points go into a pencil of

lines the vertex of which is the point ./,', where
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We mav express this by saying tluit tht- line n
{

is transformed

into the point .//. Also, since equations (_'-})
can be solved for ?/.

with the result

every point is the transformed element ot' one and only one line.

Since equations (-!), (
> ), and (4) are consequences of equations

( 1 ), \ve shall consider them as given with ( 1 ) and sum up our

results in the following theorem:

7. .1 nnxini/i(l(ii' correlation defitu'd l<y equations (1 ) ix a trnnx-

J orinnt ton by tt'liK'h etich point tx t rdnxj onned into <i tttfiliyht It/if ttml.

t-iii-li xtt'dii/ht ll/ti' int<> ,i jioint, in xucJi it i/niiun : r t/mt point* trhii'h lie on

n Kt/'itlt/ht din' arc tranxfurnu'd into #trai</Jtt /inrx n'hi<-h
f><txx t///-"i///h <i

l"i//if.
iiii'i Inii'x ii'liii'h ](xx t/i/'on<//t <( point <i/'f tninxlornii'd into jiotntx

H'hii'li lii' o,t n xfr<ti'j}it lint'. PJtich lint 1 r point ix transformed into nni-

point of li/ti- n.nil ix tin- t rit nxt ofnu'il element oj <>ne line <>r point.

('oiisider now a correlation S by which a point .r is transformed

into a line
///, and let N, be a correlation by which the line

//,'
is

traiisforuu'd into a point ./'. It is clear that the product .S'.N is a

linear transformation by which the point j\ is transformed into the

point ./'': that is, a collineation. Therefore the correlations do not

form a;^Toup. It is evident, however, that the inverse transformation

of any correlation exists and is a correlation.

We can therefore prove the following theorems:

77. If /,', /.;. /.'.
/,'

nre four art>it r<tri/ pointx, no tJiree of which lie

on a
xt/'iu'r/ht I! ni'. iiml if p . p t

. //., p nre four nrl>it ntri/ linex, no tli/'-'e

oj ii'lii'-li piixx tliroiii/Ji it point, thi'/'e e.rix/x one itntl "/////
on,' ,,,//>/,/-

tion /,// ni,-,i)ix if irfiirl, /' ix Iritnxfonni'il into
j

t 7', into p , /' into p ,

<ii('l /I into p , <tml ///<'/v i-.iixtx it/xn one a/i'l <>nli/ one correlittinH
/-//

noiinx oj n'hi'-h p tx trttnxfnrittetl into /J, p t

into l'
i% p into /.^ and

/',
in*"

/.;

777. An// nonxiiii/nlii r cnllineitttnn fxtitfifixht'n n
pr<>jeetivitii

Intn-^n

t h> pointx ut it ritnife iind tin' ////ix of n
I'ori't'Xjionil

/ it'i pftc'il. <//<</ im //

xi/f/i project it'lttf until o> rttfiltilixfieil in <n< infinite nunJ-r J i/'<iijs /'//

'/ eorrelot'uni.
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'I'ht' proofs of these tlieoreius ;iro the same as those of the cor-

ivsnoiulimr theorems of i; 1<> ami need not he repeated.
1 r~> > i

\\\ equations (
1 ) a point ./,

lies on the line u', into which it is

transformed when and only when

"n-'V + ".-/I + 'Va + < "u + ",. >Va + (
"i-J

+ ".n >'V'3

+
C'',. i,+ t '

3..)-V'a
= '

(
;"')

That is, .r lies on a eonie A"
(

.

Similarlv, from equations (^5) a line M
; passes through the point

.r . into which it is transformed when and only when

4-(.-/ ga
+J

32)jyi a
=0. (>)

That is, M
(

. envelops a eonie A',.

It is evident that the conies J\
}

and A", are not in general the

same. Their exact relations to each other will be determined later

in this section. In the meantime we state the above result in

the following theorem :

IV. In tin 1 nixe <>f (i/i// n<mi>in</uhir roi')'<'I<iti<>n tin- jmiittx trJtt'iJi He

i>n t/ ir tt'lUixfurmed lan-x (//< fxnntx t a ci'rttttn <-<tt<', /td t/te lines

tt'li'fh IKIXX tliromjli thi'tr tmnxfut'ini'd point* envelop <t ccrtdi/t <'u/iic
y

ti'lii/'/i, in i/i'iii'i'itl, tx not tlic xitnu' t> tJtc firxt,

Anv point /' of the plane mav be considered in a twofold manner :

as either an original point which is transformed bv the correlation

into a line or as a transformed point obtained from an original

line. It /' is an original point it corresponds to a line p' whose

coordinates are given by (1 ). If /' is a transformed point it corre-

sponds to a line
/>
whose coordinates are given by (4), in which we

must replace ./ bv
->',.,

the coordinates of /'.

The lines
/>

and //do not in general coincide. When they do

t he line
1

1 and the point /' are called a Jmihl,-
jniir of the cor re lat ion.

That /' should be a point of a double pair it is nccessarv and suffi-

cient that t li>' coordinates n\ and n
t

of equal ions ( 1
) and (1 ) should

be proportional; that is, that the coordinates of /' should satisfyii ^

the equations
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where p is an unknown (actor. For these equations to have a solu-

tion it is necessary and sut'liciciit that p should satisfy the equation

. on.. ".. - P" .. ... pit.

The correlations niav be classified into tvpes according to the

nature of the double pairs and of the conies J\
i

and A'
o . As a prc-

linnnai'v step \\'e shall prove the theorem:

V. If tin'
jiti/nf

/' Uinl tin' liin' p fnnn '/ ilnii!,!,' jmir. tfnn i> /.v tin-

pnliir
nf r with rt'x/'''f

tn t/if cmiii' h .

To prove this let the coordinates of /' he
//,,

\\ here i/
t

is t IIP solution

of ( 7 ) for p p , and let r
t

he the coi'mli nates of
[>.

Then r. is deter-

mined frmii ( 1
) \vlicn

.r,
is replaced by //..

Then from ( 1 ) and ( 7 ) \vc

P
r

,

p 4- ',
=

( ",i 4- ",,) '/! 4- (",-.,+ )'/+ ("..,+ ",... ) >i...

V P^'

These last equations are exactlv those which determine the polar

of /' with respect to A', and the theorem is proved.

\\'e now proceed to the classification.

.(. I. it l\ lit- it n'mJciji'iirratfi <'nii: l>v a proper choice of coordi-

nates its equation can be put in the form

so that flr

ii=
= r/

iio
= 0, ", r ~",.' ".,,= -".,0 "]^

;

~".r

If tliert' is at least one double pair of which the point is not on the

conic, it niav be taken as A
(

(I : : 1 ) without chan^in^ t he form of

equation ( 1' ). We shall then have a =<!.,= Q, The correlation is

now expressed by the equations

Neil her '/ n or n
n can be /.ero. There are then two t vpes accord-

ing as ii and <t^ are or are not eipial:

'1 \ !]: I. pn\
---

it. i'.,,

P"',
=

"'',-

P"':
~ '

,'
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The conic- A',
has now the equation J'~-{-'2 tt.r ./ 0, and the correla-

tion is a jiolarit \' with respect to this conic, ('onverselv, any polarity

with respect to a nondegenerate conic can be expressed in this form.

The equation (
*

) now becomes <t~{*[pY= 0, and equations (7)

are identically satisfied when p = \. Hence in <t
]>nl<trit>/ ever;/ <<>>-

rclnti'J jH'int dn<l Uniform /t t/nn?,/<>
j>,tir.

The eijuation (_*i ) now

becomes <tu'^+ '2 v^t., 0, which is the line equation of A^. Hence

in a ]>"l<trity the conic* J\
i

anil A', coincide.

TYPE II. pu[= rrr.,,

The conic A', has the line equation

(<( + !') 'V'i!+ '"''";f
= ^

or the point equation
4^rr/-, + (^ + Mr;=0,

and the relation of the two conies A' and A"o is as in Fi^. 2"). Equa-
tion (

*
) heconies 1 ,

,

(I
-

p ) ( n - lp ) (
/. dp )

= 0,

which has three unequal roots. The correlation has accordingly

three double pairs: namely, the point / and the line !',(', the point

I> and the line .I/.', the point

(.' and the line AC.

Tvpes I and II arise from

the assumption that there is

a double pair of which the

point lies outside the conic.

If there is no such pair, there

must he at least one of which

the point lies on the conic.

In this case take the point as

/>' ( : I :
o

) without changing
the form of equation ('.'). My theorem V the line of the double

pair which contains />' is the tangent />.(. Then, from (1 ),
ti -.-.().

\Ve have before seen that ".,
:

<'.,.,.
so that the correlation is now

p>/[= .i.j-, + <i n.r
3 .

P"'.
^

",r'r

u'=- <* * + ''

Fi... '-'-
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The coefficient a
l3
cannot In 1 /.ero or we should have the previous

case. The equation (S) is now (n pn ) (a p>i n ) {J[ p~)= 0,

and the solution p l would inve a point not on A', contrary to

hypothesis, unless n_^=(i^. We have, finally, for the equations of

the correlation :

Tvn: III. pu[ =
'/./-., -f /'./-

3 ,

K =
"-'V

P 11
'*

= - ;'-r
,

4- r,,

where a = k is not excluded. The line equation of A',, is now

and the corresponding point equation is

I'-JT^ + J-- 4-2rtr:
jr

a =0.

The two conies A"
t

and A'o lie therefore in the position of V\^. 2i.

The equation (S) for p has the triple root p1^ and the cor-

relation has only one double pair consisting of the line point />'

and the line A/1.

/>'. Lft fhf fnnii' K dc(fenernte

info tiro intersectiw) utrn.iij'ht

litifK. We niav take the e<jua-

tions of the lines in the form

<t nn
= 0,

a : n , <i
P.2 2,-i

The point />' is a (_
rain taken

as the point of u double pair

and is therefore transformed into a line through /'. and if we

take that line as .r
]

= we have, from ( 1 ). </..,
- 0. The equation (

s
)

is nmv
<(i + p)

8d-p) = rt.

where ii
^ cannot be y.ero since the correlation is nonsinijiilar.

The root p \ inves the point /' as a point of a double pair.

The root p~-\ j^ives the point : rt
.

: <r
.,,
and it this be taken as

. I we have <i
.

0.
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We have then, iiniilly.

Tvi'K I V. pn[
--- <t.r

}
+ /-./-,,

P" -
';,-

where the equality (| l the coefficients is not excluded.

The conic A'., has now the equation

nil': + f'~li~ = (>,

which is that of two pencils with their vertices on All. The relation

of A" and A", is shown in Fig. 1^7.

'
'. L>'t fin' I'l'iiir A" iliiji'th rnli' into tiro

i-i,i)n'i'i/>'nt
ttfrtrij/Jit

h'tii'x. Take the equa-

tion of A' as .._ _ o
';!

The discussion proceeds as in the pre-

vious case with the coefficient n placed

equal to zero. We have, accordingly,

Tvi'K V. pir :

= -
A./-.,,

The conic
A"_,

has the equation iif
= <>. which is that of a double

pencil of lines with the vertex .1. The relation of the two conies

A"
;

and A'
o

is shown in Fig. ^x. The equation (S) now becomes'

\R
The root p = l gives the point .-I as

a point of a double pair of which the

line is /!''. The root p - -1 gives

anv point on the line !'>< '. so that it M
is anv point on IK' it is a point of a y t

double pair the line of which is AM.

EXERCISES

1. Find the <i|uare of each of the different tvpes of correlations and

determine the tvpe of coll i neat ion to which it belongs.

2. I'rove that it /' i-- a point on A"
t

the tuo tangents drawn from /'

to A, are the i \\-o lines to which /' corresponds in the con-elation

according as /' is considered as an original \>\\\\ or ;i t runs formed jioint.
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3. Prove that if
//

is a tangent to A'., the two points in which
//

inter-

sects A' are the two points to which
// corresponds in the correlation

according as
/>

is considered as an original line or a transformed line.

4. Take any point /'. Show that the line into which /' is transformed

bv a correlat ion of Types II. I 1 1, V is a line which connects two of t he

four points of intersection with A' of the two tangents drawn from/'

to A'.,. Show also t hat t he line which is transformed into /' is a not her line

connecting the same four points of intersection. Determine these two

lines more exactlv and explain the construction in Type IV.

5. Take any line
ji.

Show that the point into which /MS transformed

by a correlation of Types II. I I I , V is one of the four points of inter-

section of the four tangents drawn to A'., from the points in which
//

intersects A" . Show also that another of these points of intersection is

the point which is transformed into
/>.

Determine these points more

exactlv and explain the construction in Tvpe IV.

6. Show that if every point lies in the line into which it is trans-

formed by a correlation, the correlation is a singular one of the form

43. Pairs of conies. The preceding results may be given an

interesting application in studving the relation of two conies to

each other, especially with reference to points and lines which are

the poles and polars of each other with respect to both the conies.

Let y, /a..r,r,=
<>

( 1)/ i IA I A

lie two conies without singular points. The product of a polaritv

with respect to (1) and a polaritv with respect to ( '_' ) is a non-

singular colhneat ion which mav be expressed bv the equations

P ( ''\r>'\ + f>iA + f>*A >
= f'irri

+ Wi + "V.T (
:}

)

P (
f>

\;/\ +- f>
./- + ''.'.."'I! )

:
"i:r''l ^ ''-::'". + '<..;>'

'I he fixed points of the collineation ( '">
> are identical \\ith the

points which have the same polars with respect to both < 1 and ( il ).

and the tixcd lines of ( ']
)
are ident ieal with the lines which have t he
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same poles with respect to (1 )
and ('2). Kach fixed point of (o)

will be paired with some fixed line of (-\) as pole and polar. These

points and lines we shall refer to briefly as common polar elements.

We shall have as many arrangements of common polar elements

as there are arrangements of fixed points of (
>

) and may classify

them into the types ^iven in 41.

Tvi'K I. There are three and only three common poles A, /', C

( Fi^. '2'.' ) and three common polars .I/.'. IK', ('A. To pair these oft

we notice first that no point can be the pole of a line through it.

For if H were the pole of />'

.I/.', for example. (' would be

the pole of either AC or /!(',

say AC. The lines AH and

.If 'would be tangent to each

of the conies ( 1 ) and ("2) and

A would be the pole of IK '.

Then if I> were any point

whatever on lie. and E its

harmonic.1

conjugate with re-

spect to /,' and C. the line

I-'.A would be the polar of

l> with respect to both (1)
and (2). Hence the conies would have more than three common

polars. and the eollineation (
-\

) would not be of Type I. 41.

Therefore the triangle is a self-polar triangle with respect to

both (1) and (2). By taking this triangle as the coordinate tri-

angle, the equations of the conies reduce to the forms

./i

2 + ./:+./;= 0, (4)

P ''.;

\vhfi-t-. by H . it
^

-: it : ,i .

Tin- two cidiics ( 1) and (

"

) intersect in four distinct points, as

is easily proved.
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Tvi'l". II. There are two common poles ,1 and C
( I- "\\r. ><

and two common polars AC and /!('. The point C must he tin

pole ot one of the lines A*' and /!('

which pass through it, and hence

<' lies on the two conies. But, ('

cannot he the pole of !'>(', for, if

it were, .1 would he the pole of

AC, and the line AC would he taii-

X''iit to the conies at A and in-

tersect ine; them a^ain at <\ wliieh

is impossihle. Therefore C is the
( <_

pole of AC and J of lie. If we
F|(

.,
()

take the axes of eoi'irdinat es as in

Type I\", sj 11, the equation of each ot the conies is ot the form

,v \r +'','; +^vvv:<>. (7)

Without cluing'illg' the position ot the axes we mav take one ot

the conies as
t
.-2

i

t
.-2 , o r ;

. . o , ^ \

leaving the equjition of the other in the jjvneral form (^7). 'i he

p(

P-'
- '- "'

-P

P-'i
==

That this should he of TV pe I \ , >j -1 1. \ve must have n
^

-- n
,
n

t

<i .

The conies ( 1 ) and (
'1

)
are tangent at <

' and intersect in t wo other

points, as is easdv [irovi'd. The A I>,

conii-s ha\e no common sell-polar

I naii'_;'le since t here are in .t 1 1 nve

fixed point s in t he << >1 lineal ion ( '.' ) .

TVI'K I I I. There is a line H<
'

( !'!'_;. '! 1
)
each point i if \\ hich is

a common pole ami another com-

mon pole .1 not on liC. The

common polars consist of the line liC and all lines ilin>n<_:
-

Ii I. I;

is e\idelit that .1 ix the common pole of /!<', and hence /.''' is imt
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tangent to tin 1 conies. 'I'akc as // any point of />v'and take (' as the

pole of .!/>'. 'I'licii . I /'(' is a common self-polar triangle. The equa-

tions <>f t lie two conies may now he written as in Type I, ( 4 ) and (">),

with the addition that now <i
}

-
</.,, in order that the eollineation (t!)

should he of 1'vpe II,
Jj
41. Hence the equations of the conies are

reduced to the forms
;/-,-

4- ./; + .':=<>, (10)

j-{+j-*+atf=Q, (11)

and the eollineation (']) becomes

p.r,
= rrra .

The two conies are tangent at two points, namely the points in

which the line IK' meets the conies. This is easily seen from the

equations. \Ve may also argue that if IK' meets (!') in A, the

point /, is a common pole of the line A I.. Hence AL is tangent

to both conies. Similarly, if .!/ is the other point of intersection

of IK' and (lo). AM is a common tangent to the conies.

Tvi'K IV. There is one common pole (' (Fig. )-) and one com-

mon polar /''. Hence the two conies are tangent to IK' at ('

and tangent at no other point. Take any point on the conic (1) as

.1. and the tangent to ( 1
) at A as A /!.

J; \

The equal ion of ( 1
) then is

.!+ f

2 .// = 0,

while that of ( - ). since it is known

only to be tangent to IK' at <
', is

The eollineation (>) is then of the type

P4 Vi+'Vsi

p.r\ '/../'I -f .i..,:. + ,/../-...

Iii order that this should havo

mdy one fixed point it i-; necessary

and snl'lieieiit that '/ </.. //
.

- ". The two conies, besides being

tangent at <
'. intersect m the point ./^ :./,:./,= '/:: 4 n..<i^.

* 'if.
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If this point is taken as the point .1 in the coordinate triangle,

\\ e have >i - ". The equations ot the conies are then

and the culliueation (
:'>

)
is

p. I'.,
- (I'M

which is of Tvpe VI, !j 11.

As noted, the two conies are tangent at one point and intersect

in am it her point.

TYI-K V. There is a line /!>' ( l-'i^. :}:}
)

of common poles and a

pencil, with vertex (' on !'<', of common polars. Kver\ point on ]'><'

is theretore the common pole ot some line throiic'h f
', and hence

(' is the comnioii pole ot IK'. Hence the two conies are tangent to

J1C at (
'. \\'e proceed as in T\'pe IV, lnit we

iiou' find that in order that all points on r
,

.--

should lie tixeil points ol the i-ollineat ion we

must have ti(i,it^ty. The equations of the

ei Uiics tlit-refi ire reduce to

^ + "A + -'','';
^ "^

and tlu- collineation ( :> ) liecomes

P J
'(
=

-''i + "' -

^ -

=

Tvi'K \ I. Fverv point of the plane is a common pole \\iih

I'opcct to the t \\ o collies. The two collies are iiliviolislv identical.

1 o each tvpe ot the arrangements tit the common polar elements

corresponds a distinct kind ol intersection ol the t\\o conies.

( 'oiiverselv, the nature ot ihe ciimmoii polar elements ;> detcr-

ied li\
p the nature of the inter.vcct ions, as i> easil\ pro\e<l.
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It is sometimes important to find, if possible, a self-polar triangle

common to two conies. The foregoing discussion leads to the

following theorem :

It tit'n rmi/i-s iiiterxert in fiinr distinct points they have one and

ail /t "in i-'ii/i ini'ii si
If-f

i'i/ 1 1 / tridni/le. If tht'if are t(tinj< nt in tiro points

///<// luii't tin inliiu'ti' number of rii)itiitnn elf-polar triantjlex, one vertex

(if u'fiti'/t is /it tin' tiitiTtifi-tioit of tin' i'ii/niiion tan</ents. In <ill other

casts f t/'o i/is///ii't ci'H/i-s //ii/'i- no I'otiinton self-polar triainjle,

It is only when two conies have a common self-polar triangle

that their equations can be reduced each to the sum of squares

as in Types I and 1 1 1.

EXERCISES

1. Prove that the diagonal triangle of a complete quadrangle whose

vertices are on a conic, or of a complete quadrilateral whose sides are

tangent to a conic, is self-polar with respect to the conic; and, con-

versely, every self-polar triangle is the diagonal triangle of such a quad-

rangle and such a quadrilateral. Corresponding to a given self-polar

triangle one vertex or one side of such a quadrangle or such a quadrilat-

eral may be chosen arbitrarily. Apply this theorem to determining the

common self-polar triangle of two conies in the position of Type I.

2. Discuss the common polar elements of a pair of conies when one

of them has singular points, obtaining seven types corresponding to

the seven types of singular eollineat ions given in MX. 1. ? 11. (Notice

that if the conic i
1

)
consists of t wo intersect ing st raight lines, the point,

of intersection /'is the singular point of the corresponding eolliiieation,

and the polar //
of /' with respect to the conic < L' ) is the fixed line. If the

conic ( 1 ) consists of a si raight line taken double, t hat line is the singular

line
//,

and its pole /' with respect to the conic
<

L' ) is the tixed point.)

44. The projective group. As we have seen, the product of two

eollineat ions is a eollineat ion, and the product of two correlations

is a colliiieation. It is not difficult to show that the product of a

colliiieation and a correlation in either order is a correlation. The

inverse transformation of either a colliiieation or a correlation

always exists and is a colliiieation or a correlation respectively.

I fence we have t he t he< >rem :

Tin' tntiilit/i if iionxi //i/nl<i r milliK'nt i<m* tiii'l ii"iisini/nlit r rnrt'i'/a-

ft'i/IS III it nlitn,' Jurat a
ijl'otlp,

i

if H'liii'll t//,' cull I iK'ilt li'iix Jui'llt (I
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Tliis group is called the pruji'i-tirt' <//'""/',
and ///o/Vr/'/'v >/>/>,//cfr//

consists of the study of properties which are invariant under this

group.

It is evident then that project ive geometry will include the study

of straight-line figures with reference to the manner in which lines

intersect in points or points lie on straight lines. Such theorems

have been illustrated in sj :><>. Lengths of lines are not in general

invariant under the projective group, and projective geometry is

not therefore concerned with the metrical properties of figures.

The cross ratio of four elements is, however, an invariant of the

projective group, and hence the cross ratio is of importance in

projective geometry.

IJv means of a collineation anv conic without singular points

mav be transformed into the conic

This was virtually proved in ^ >"> when we showed that anv equa-

tion of the second order with discriminant not y.ero maybe reduced

to the above form. l>ut any transformation of coordinates is ex-

pressed by a linear substitution of the variables, and this substitution

mav be interpreted as a collineation, the coordinate, system being

unchanged. Hence anv conic without singular points can be trans-

formed into any other conic without singular points by a collineation.

Similarly, any conic with one singular point may be transformed

into anv other conic with one singular point, and anv conic with

an infinite number of singular points mav be transformed into anv

other which also has an infinite number of singular points. Hence

projective geometry rccogni/.es only three types of conies and studies

the properties which are common to all conies which belong to each

ot the types. Such properties are illustrated in the theorems of

ij ')!'. where the distinction between ellipse, hyperbola, and parabola
is not made.

In projeetive geometry it is convenient sometimes to consider the

properties invariant under the subgroup of collineat ions. The corre-

lations may be implicitly employed by use of the dualistie property.

45. The metrical group. \Ve shall proceed to study the eollinea-

tions which leave all distance invariant or multiply all distances

by the same constant k. For that purpose it is convenient to use
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( 'artesian coordinates. Sinn* it is evident that all points at infinity

remain at infinity, the transformations must he of the form

p.r
=

n^r + <y/ -f "./,

*>.'/'= V + 'V/ + V 0)

P?=t,

or in nonhomogeneoiis form

j
j = a j- + r/.,// -f a .

Transformations of this type are called (iffine, since any point

in the Unite part of the plane is transformed into a similar point.

\Ve proceed to lind the conditions under which an alline transfor-

mation will have the properties required above.

If
(./-j,

//
l

) and (.r.,, //.,)
are any two points which are transformed

respectively into (./(, i/() and (.<!,, if'.,), then, by hypothesis,

Since this must be true for all values of the variables, we have

aia,+ 1^= 0.

From this follows alu'ebraicallv *''.,= "
1

, A^T'/.,. Also an

an^le can al\\a\s lc found such that </ k cos
(/>,

b = k sin 0.

Equations (-) can then be written

./'= /- (./ cos
cf) if sin <) -|- rt,

//' ('' sin
(/> -f //

cos $)-\-li.

sThe product of any two transformations of the form (

also of the form (
:>> ). This can be shown bv direct substitution,

or fnlldws ^eometricallv, since ( -\
)

is the most general collincat ion

u hieh multiplies distances bv a constant. It is also cvidi-nt that
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the inverse transformation of (o) exists and is of the same form.

Hence the following theoivm:

I. Tranxfurmatinnx <>f ttn' form (3)f<>r)/i a yruup called (Jn- t/tt'trirnl

i/rt'iiji <f fiilliiieuti'jnx.

To this we add the following theorem:

II. Hi/ tli,' nit-t r'n-itl
///'"(//' '.-'

i-nUim-iltivnx thf riri-lf [mint* itt infinity

iii'i- 't'f/nr fi.i',',1 nf iittft'f/mni/i'il icitli i'ii<-h of/tfr. ( 'vnt'crxt'/i/, <it/// <<>!-

Inn 'it fill H'llli'h IfiU'ix tilt' '//</, fiut/it* ft.it il '//' llttr/'t'/HtHi/CH tJlflll

This follows from the fact that minimum lines ( 111) must he

transformed into minimum lines. Since the line at infinity is fixed,

the points where the minimum lines intersect the line at intinitv

must he fixed or interchanged. Theorem II may therefore In-

n-stated as follows:

///. Tlif iiiftrli-nl
<//'">/}/

/IV//VX inntriiint tin' curre nf xft-n/nl fluxx

i-nitxtxtin,/ if tft,' tn'" circle i>ints at infinity.

\Ve shall no\v enumei'ate certain special types of the trans-

f' irmat ion
(

'-\ ).

T
{,,'=,/ + I,.

This is of Tvp- \', vj 41, the line of fixed points hcing the line

at intinitv, and the pencil of fixed lines heing the parallel lines
L i ri i

intei'sect ing in </:/<:<>.

The translations evidently form a subgroup of the metrical

gi i MI p.

II. Rntiltinn ttlmllt it //./'.//
jin'lilt.

It the lixed point is the origin, we have the transformation

the
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A rotation about any other point is the transt'onn
( ^ ;">

) of If by '/'.

Thus, if //' is a rotation about ( </, /<). Ji' TUT \ whore //' is the

transfonnatioii , , , , . .

( .r ti =
(

./ a) e< >s <p ( _//
//

) sin cp,

! //'
li = (.r it

) sin
</> + (// //

) cos (p.

The substitutions Ji and li' form each a subgroup of the

metrical group.

III. ^Iininificutiun.
s I I
f .c = A".r,

M\ , ,

[ //
=

*!/

This is of Type II, ^41, the ti\e<l point being the origin, and

the line of tixed points being the line at infinity. The pencil of

iixed lines is the pencil with its yertex at
( 0, ).

A magnification .]/' with the iixed point ( <i, I) is the transform

of M by 7'; thus, M' TMT~ \ where .)/' is the transformation

(.r' a = k(.r ),

]I

'{,f'-I.= k (//-/')

The transformations .17 and M' form each a subgroup of the

metrical group.

IV. litjlfi-tinn <>n <i tttrai'/lif lint:

If the straiht line is the axis of .r, the transformation is

This is of Type II. ^41, the line of fixed points being //
= 0.

and the distinct fixed point being 0:1: 0. The tixed pencil of lines

consists of the parallel lines through : 1 : 0.

If, now, (' is a transformation of the metrical group ( :>), it is not

difficult to show that it is the product of transformations of the

types we haye enumerated. There are, in fact, two main divisions

of the metrical transformations, namely,

CLASS I. Mi-trii'iil Irnnxfnrmatinnx nut /'//rn/ri//</ </ /v //<-.-/ /<//.

Consider f TMli. It is evident that I' is given by the equations

'./' = /(./ cos
(f) // sin (f) > -f- <i.

and that, crmvcrsely, any transformation of this type can be ex-

pressed as the product '/'.)//,'.
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CLASS II. Metrical trunxfurinatiuns involving u r*'flei-ti<,/i.

Consider L'n
= TSMli. It is evident that (' is of the type

( ./' = /c(.r cos
(/> y sin <

) -f- '/,

-

[ //'
= /c ( jc sin $ + _y

cos
<j>) + /,

which can also be written

fj-' = /.(./ cos < 4- //
sin (/>) -f- </,

-
' = / ( .r sin

If
COS ) -f- l>

by re-placing by (/>,
an allowable change, since is any angle.

Conversely, any transformation of type ('., can be expressed as

the product TSMlt.

'1 he transformations (' form a subgroup of the metrical group.
The transformations I

".,, however, do not form a group, since the

product of two such transformations is one of the form U .

46. Angle and the circle points at infinity. I>y the metrical group

angles are left unchanged. This is evident from the fact that any

triangle is transformed into a similar triangle. Also the cross ratio

of anv two lines and the minimum lines through their point of inter-

section is e([ual to tlu- cross ratio of the transformed lines and the

minimum lines through the transformed point of intersection, since

minimum lines are transformed into minimum lines. This suggests

a connection between this cross ratio and the angle between the

two lines. We shall proceed to lind this connection.

Let the two lines be / with line coordinates ?v, and /, with line

coordinates n\. The coordinates of any line through the point ot

intersection of / and / are u
f

=
'',4-X'/',., and this is a minimum line

when a
t

satisfies the line equation of the circle points at inlinit\,

namelv,

This gives for X the equation

where .-1 = MY + M'.r, /' = l'\<\ + >'.,/r.,. ('rf+VJ.

Lei us place X, :

.1

- /; /\Tr-/; J

A
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and call
>HI

the niininiuin line corresponding to X , and
;//., the

minimum line corresponding to X,. Then (^ 1-5)

X. - /; + /\ AC //

(/ / , >>,< )= = -
\ -jt-rtAc-jr-

Now the point eqmttions of
/,
and

/.,
are respectively

<V' + '',.'/
+ >:J

= 0,

wy + u\,y + tr
a
t = U,

and if
(/>

is the angle between them,

>\"\+ t'.-ir., 11

cos $- =
\ l'+ r~\ tr- + tc: \ AC'

_sin 9 = _-
VAC

,P , , Xj
-

cose/) /sin
<^>

1 herefore
X., cos 9 ^ t sin 9

i X
whence 9 = log

-

L
" \

The ambiguity of sign is natural, since an interchange of \
i
and

X would change the sign of <b. We have, therefore,
2 o O

9 = log (//.,, injii.,).

Tin- K/ii/li- In'tll't't'H (!/'<> li/ti'X ix therefor? r<ju<ll
t" tinli-tt tin'

If 9-
^

- L = -1, and, converselv, if
1 = 1, 9=

'

+ k-rr.
> "x ^ >

. . _ A
, A.,

I lelice

/''//" '/>'///:!/ linfx until Ac tiffined <ix Innx H'hirJi <tr<' lutrtiUiHlt'

i-niij iii/iit, x irit/t
ri-xjn'1-t

t/i (/!, minimum Itnrx t/tru<//i their [mint <>f

1/ttiTxi'ctiv/i,
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PROJECTIVE MEASUREMENT

47. General principles. The results of the last section surest a

generalization, to be made liv replacing tin- circle points at intinitv

hv the general curve of the second class,

V./ a >/,",-<>, U tl
= .!.) (1)

which we sluill eall the fundamental </////,. Let / and /, ( Fig. o4 )

be anv two lines, and let t and t
a be the two tangents which can be

drawn to the fundamental conic from the

point of intersection of /
(

and /,. Then the

nrojective an^le between /, and I is defined
I J CT 1 '2

by the equation

4_ (//,)
= M log (//,,, //,,), (-1)

where .17 is a constant to be determined

more exactly later.

This satisfies the fundamental require-

ments for the measurement of an angle,

since it attaches to every angle a definite

numerical measure such that the sum of the measures of the parts

of a whole is equal to the measure of the whole. To prove, tin-

latter statement, notice that

Now. if
/^ /,. and /, are three lines of the same pencil, with coor-

dinates \^ A,, A., respectively, and the coi'ml mates of the lines /
(

and
/.,

of the same pencil are taken as and s_, we have

Henc 4 (

107

= 4 (
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Dualistieally, if the fuiulamental conic does not reduce to two

points its equation can IK- expressed in point coordinates as

Then, if I\ and
/_! ( Fig. of>) are two points, and

7',
and 7', are

the two points in which the line
/,'/.!

cuts the conic, the projective

distance /,'/.!
is delined by the equation

dist. ( /;/; )
= A'

log- ( l[If 7\ T..), (4)

where A' is to be determined later. It is

shown, as in the case of angles, that

dist. (/;/:) 4- dist. (/,:/;)
= dist. (A'/')-

The analytic expression for distance

and angle in terms of the coordinates of

the points and lines, respectively, may F](
. ,,-

readily be found. Take, for example,

equation (4). If
//.

are the coordinates of
/,'.

and z
{
the coordinates

of ./!. the coordinates of 7\ and 7
1

, arc
// (

. A .?. and//, A
2 ?,, where

A, and A are the roots of the quadratic equation

which we write for convenience in the form

We will take
ro, , 4- co(i)_

and A =

Then, 1)N- the definition ( i2
) and theorem III, ij lo, we have

But
\ "> - \ to^ to

vi/
to a)

!/
.
/

")
z:

and therefore we have, as the final f<>nn,

i- to,, 4-\ to; to to ,

dist. (///.)= -2 1\ log
-
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There is of course free choice as to which of the two values of

X is taken as X . To interchange \
l
and X,, is simply to change the

positive direction on the line.

The distance between two points is zero when the two points

are coincident or when the line connecting them is tangent to the

fundamental conic, since in the latter case X
;

= X,. The tangents to

the conic are therefore analogous in the protective measurement

to the minimum lines in ordinary measurement.

The distance between two points is intinite when X
(

or X, is

zero or infinity. This happens only when
/,'

or I' is on the funda-

mental conic. That is, y^//;/
1

* on thf fundainrntal n, ///'< art' at mi

infinite dittanfe from all other points.

Similarly, consider equation ('!). If '-.and
>/, are the coordinates

of /, and /, respectively, the coordinates of ^ and t
a are

\\
\

l "\ and

!- \ wv, where \
l

and X., are the roots of the equation

which mav be written

n -2xn,,+ \ 2n.= o.

r i ^ -.,,. N ,

t we take
\^
= -

we have, bv (-), _
\ O + x p- ._ q r>

4 (,-;/ )
= .l/log-

1 -iM/log
.....

. ( , >

1

\ \ ",,.n,,,,,

An angle is zero if /
;

and /, coincide or if ^ and /, intersect on the

funilamental conic, for in the latter case X^X.,. That is. ///////. .v '//////

llit> 1'Xi-i-t 'it il/i nit'fllit' <l ixtil in'* null:' 'I Zi'T'i >'/>'//' il'ltji . it, -/i nf/n r. I hc\'

are therefore analogous to parallel lines in Euclidean measurement.

The air_;'le between two lines is intinite if either line is tangent

tn the fundamental conic.

Fri'in the definitions we have the following theorem:

/*/';/>'<//'< il'txtttllfi' il/nl <//"//, ,ir>- il/l<-]i<l//<l'>] I"/ t)i>
'/f">IJ> ';'

1'iJftfl-

t -,ltf'i/ifs ll-fiii'Jl /'it/', f/i,' t'n inLl Hi' K f <tl i-i'/ii'' i ii '''I I'l'l nt .

\Ve shall now pmceed to discuss imu'e in detail three cases,

according ti> the nature of the fundamental conic.
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48. The hyperbolic case. We assume that the fundamental conic

is real. It may then be brought by proper choice of coordinate

axes to the form

in point coordinates and to the form

in line coordinates.

The conic divides the plane into two portions, one of

we call the inxiilc of the conic and which is characterized

fact that the tangents to the curve, from

any point of the region are imaginary.

The <Dit*t'i/<' of the conic is the region

characterized by the fact that from every

point of it two real tangents can be

drawn. We shall consider the inside of

the conic.

If /
l

and /, (Fig. ^h") are two real

lines intersecting in a point inside the

conic, X and Xo of equation (7), 47,

are conjugate imaginary. Let us place

Xj
= >v"/>

,
where

cos 9
.

, v/n n -n*
s 9 = - _ , sin (p

=

Then X
a
= rc~ {* and

Since it is desirable that the angles which a line makes with

another should differ by multiples of TT, we shall place M

and have, as the complete definition of the angle between the

Iill(
's ;

,

;U1(1 ^ = < + mr:

whence cos =
/

(
:>>

)

7T
Two lines are perpendicular to each other when (

'1 n -f 1
)

For that it is necessarv and snflicient that -1. The two lines
X
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arc then harmonic conjugates with respect to t
{

and t^. This has a

H'eoiiictric meaning, as follows: Let /'
( I''ii^. >') lie the point ot in-

tersection of /
t

and /, [>
the polar of /', I. and /, the intersections

of
i>

with / and /, respect ivelv, and 7'
(

and 7', the intersections of

the conic with f and f
: respect ivelv. 7'. 7',, ^, f.,, hein^ imaginary,

are not shown in the figure. Then l>v VI, ^ -54, 7' and 7', lie on
y>,

and by I, ^li', (1^1..,. 7\ 7', ) (
/y.,, M,). Hence, in order that the

two lines / and /., should he perpendicular it is ueeessarv and sufli-

cient tliat I, and L., should he harmonic conjugates to 7' and 7',,

and hence (VIII, vj ->4 ) /. must lie on the polar of /.
,,
and /,

,

must lie on the polar of /, . P>ut the polars of I. and L, jiass

through /' liv \',
Jj
^4, and therefore / is the polar of /.,, and /,

is the polar of /, . Hence fr lirn Ihn'x // /<

pt<rpt>n<H<'l(ltir
it i*

th't't'ttxiiri/ iiH'l xiillii-ii-nt f/mf >''/'// xh<>ul<l jmxx thrn>j}i (/n*
)><>1<' "f

thf ntJUT.

( 'onsider now the distance het ween two points /,'
and /.; ( I-'i^'.

oti
)

inside the conic. Then X and X, of (">), ^ 17. ai'e hoth real, and

hence if the distance /[/' is to he real we must take A" as a real

ipiantitv. Let us place A" = where /." is real. \\'e have, for the

distance,
" X.

,
. w -f- \ or.. <i>. ,(:)

.
(
4 )

If \ve \\'i'ite </ for dist. ( //, ^', ) we have, from (4),

\\'e have already noted that it /,' is inside the conic and
/._,'

on

the conic, the distance /J/.;
bt'eoines infinite. If /' is inside the conic

and /.,' outside of it, X, and X. in eijiiation f 1 ) have opposite Minis.
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ami the distance 1(1',
becomes imaginary. J f

, thru, we can imagine

a being living inside tin- conic and measuring distance and angle by

the formulas
(

.">
)
and

(J-\ ), the (.-nine would lie for him at an infinite

distance, and the region outside wonld be simply nonexistent, a

mere analytic conception in which a point means simply a pair

of coordinate yalnes. Such a being would haye a nnn-Euclidean

</*'"//n ?/*/ ot the type named Lobachevskiim.

We haye, of course, based all onr discussion on the assumption
of the Euclidean axioms, and the inside of onr fundamental conic is

simply a portion of the Euclidean plane. It lies outside the scope

of this book to show that by a choice of axioms, differing from

those of Euclid only in the parallel axiom, it is possible to arrive

at a geometry which for the entire plane has properties which are

exactly those of the interior of our fundamental conic, with the

protective measurement here defined. Such a discussion may be

found in treatises on non-Euclidean geometry. The inside of the

fundamental conic is a picture in the Euclidean plane of the non-

Euclidean geometry. We shall proceed to notice some of the most

striking properties.

We first notice that if /. A" ( Fig. -\7 ) is a straight line and /'

a point nt on it. there go through /' t\vo kinds of lines, those which

intersect /.K and those which do not.

The latt'T lines are those which in the

entire plane intersect L K in points

outside the conic, but from the stand-

point of the interior of the conic thev

\\\\\>\ be considered as not intersect-

ing LK. The two classes of lilies, the

mt er>eet in ir and the lion intersect in <r
.

Fn,. ::

are separated from each other by two

lines /'/. and /'A", which intersect L K on the conic:

infinity. Thoe lines we call ///<///</ lines, and sav that tftri'n/t/h a

jaunt nut <i/i ,i xf/;i/i//if //'//, f, in },,' ilriin-n f/i'n ////rx ?//v///7 t<> tlmt

*f, <"',//,/ tint:

The aii^le which a line parallel to 1. 1\ through /' makes with

the perpendicular to /, A" is called the ////_<//.
nf

pnraU<'lixii>* and is a

function of the length of the perpendicular. To compnte it. let

us take U\ as jr 0. the point /' as
//_,

and the equation of
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tlie conic sis ./y + .r: j\: 0. The pole of LK is
(

1 : ; ). The

line J'/i is perpendicular to LK when it passes through the pole

of LK. Its equation is therefore
//..-''., //.,''.-- ", and it interM-cts

LK in 7,' (0 : //>: //;i
).

Hence, if p is the length of /'// we liave, from (">),

,
/' V/^T-.'/J

1

,
/' .'/i

cosh - = i smh = -
(

i

)

The point K is the point (0:1:1), and the equation of I'K is

(//., //.,).'"j //j-''.,
-(- /^-''.j--

'' Hence to lind the un^'le between /'A"

and /'A' we have to place in (oj

"'l= !'., .'/;,' "'3=
-

//p "'3=

There results, Avith the nid of ('),

It appears, then, tliat the single ^ is a function of p. We sha

place, following Lobaelievsky's notation,

Our last equation then leads with little work to the final result :

tan JTT (=,-'; (7)

This result is independent of the fact that it has been obtained

for the special line .r =0 and the special form of the equation ot

the conic since no t ran s tormat ion of coordinates alt ers t he project i\ c

angles or distances.

It in formula (>) \ve consider //. as a lived point f and replace

z
i
bv a variable point ./',

at the same time holding the distance </

constant, we ha\c

as the equation of the locus ot a point at a constant distance

from a fixed point. This locus is called a pseiido circle. From

tin 1 form of (S) it is obvious that the pseiido circle is tangent to
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tlie fundamental conic ro
r/ .

= at the points in which the latter is

cut 1)V the polar &>,,,.
= of the point //,. There are three cases:

I. The point (' lies inside the conic (Fig. -5S ). The pseudo

circles with the center //,
are then closed curves intersecting the

conic in imaginary points.

II. The point (' lies on the conic (Fig.
:W), and the distance of

each point from
//,

is infinite. The pseudo circles are tangent to the

Fit;. 08 Fit;. 3!1

conic. They art- the limiting cases of the pseudo circles of Case I

when the center recedes to infinity and the radius becomes infinite,

and are called in non-Euclidean geometry limit circles or horicvcles.

III. The point C is outside the conic ( Fig. 40), and the radius

is imaginary so that points of (S) lj c
> inside the conic. The straight

line (!>,= " is one of these pseudo circles, and the others are the

loci of points equidistant

from this line. To prove

the latter statement draw

anv straight line through ('.

It intersects the polar of <
'

at 1! and the pseudo circle

in two points one of which

is (,>. Then ('/,' and <'(,) are

constant, and hence Ii(
t

> is

constant. In t his ^cornet rv.

then, the locus of points equally distant from a straight line is

not a straight line, but a pseudo circle with imaginary center and

imaginary radius. It is called a hypocycle.
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EXERCISES

1. Consider angle and distance for points outside the fundaiuenUil

conic, especially with reference to real and imaginary values.

2. (/(instruct a triangle all of whose angles are /.ero.

3. Compute the angle between t \Vo lilies of /ero length and Ix'tweeli

anv line and a line of /.ero length.

4. Prove that the sum of the angles of a triangle is less than two

right angles.

49. The elliptic case. We assume that tin- fundamental conic is

imaginary. It mav lie reduced l>v proper choice of coordinates to

tlir t'"nn w ,,.= ./v4-.r; + .r;
= (1 )

in point coi'tnlinates and to the. form

12 KH =z/ 1

2 + ?/| + ?/* = (-2)

in line coordinates.

Since the tangents from anv point to the fundamental conic

are imaginary, the problem of determination of angle is the same

here us in the hyperbolic case, and we have

Any straight line connecting' the two points I\ and /.! meets the

conic in imaginary [mints, and if I[ and /' arc real points, the

quantities \
1

and A., in (>), 47, are conjugate imaginary. Hence,

it the distance between two real points is to be real, we must take

K as pure imaginary. We will place l\ where k is real.

Placing X
(

= /"', where

(O
i

. . \ ft) O) (i)'

(( is
(p
= . Sill

(/)
-

"

<

\ (i) M \ f<) (I)

and representing the distance ( y,.~, ) l>v '/. we ma\' n-duce formula

(
> ), vj 47, to the form ,/ (l)

'I wo real points arc always at a I'mite distance from each other,

since, as shown in 47, an infinite distance only results when one

ot the points is on the fundamental conic.

( 'oiir-idcr the change in <l a^
r,
moves along a straight line.

//

being fixed. In the he'nmiiii"' of the motion, when ; coincides
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: . and the sign of the radical must be taken
\ (t)

,..,

(0
,

,,

that cos = 1 and it 0. As z
i
moves away from

>/ i
the signs

of the (plant ities on the right-hand side of equation (4) remain

positive and </ increases until z
t

reaches a point on the line (^
UJC
= 0,

/(Fig. 41 ). the polar of
//,.

Then

,/
.-

cos = n and it /.. This is

true of all lines through //.

and for either direetion on any
such line. Hence the straight

line fD, / ,= 0, which, by 4<S,

is perpendicular to all lines

through //,,
is at a constant

-k
distant1 from

// (

in all
ii

directions.

Consequently, if we start from
//,

and traverse a distance -rrk on

any line through //.
and in either direction, we return to y t

. There

are two eases of importance to be distinguished:

CASK I. All straight lines may be considered of length Trk.

The coordinates
//. always refer, then, to a single point. All straight

lines intersect in one and only one point, then' are no parallel

lines, and two lines always bound a portion of the plane. This is

the Kit'mannian </<'<>iiirtri/. It may be visuali/ed by drawing straight

lines from a point outside the plane and considering each point of

the plane as represented by one and only one ot these lines.

('ASK II. All straight lines may be considered of length '2 TT/C.

When we traverse the distance TT/,' on a line from if f
and return to

//,,
we shall consider that we are on the opposite side of the plane

and need to repeat the journey to return to our starting point.

Any coordinates // , then, are tin.; coordinates of two points lying

on opposite sides ot the plane. Two straight lines intersect in two

points, there are no parallel lines, and two lines inclose two por-

tions ot tin- plane. We call t his x/Jn'ri'-iil i/coi/irfr//, since it inexactly

that on the surface of a sphere. It is also the geometry of the hall-

lnies or rays drawn to the plane from a point outside of it.
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EXERCISES

1. Construct a triangle all of whose angles are ri^ht angles.

2. Prove that the sum of the angles of a triangle is greater than

two n^ht angles.

50. The parabolic case. We may consider that the fundamental

conic is one which contains singular points or singular lines.

There are, then, the two possibilities of the point equation repre-

senting two straight lines or oi the line equation representing

two points. The former possibility has little interest, and we shall

consider only the case in which the line equation represents two

points. There are two cases to distinguish:

CASK I. Tht 1 ("' p!nts <ir>' i//i<i</iit<irt//.
We may take them as

the two points 1:/:0, and the line equation oi! the fundamental

conic is then O __ -j , ,,-___() i

The formula for an^le nuiv be modiiied as in ^ 4*, \\ith theO v i
1

result that

'1 he point equation oi the fundamental conic does not exist and

the distance formula ('!), sj 47. cannot be immediatelv applied.

\\ e ma\' proceed, however, 1>\' a method oi limits. Jn place ot (1 )

Wl ' wi11 xvrite 3s '

and from this we iind, as in 4S,

sinh
' f

/

N ( '/^~ //
- ;

-'
1

}
~_^:-

e (

as t~ == i) and h s. in >iich a manner t hat l.im //, \ t 1 . We ha\ e
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If we take ./'., as the line at infinity, the points 1:/:0
become the circle points, and the formula (l!) for angle and (

;">
)

for distance become the usual Cartesian formulas. The <reometrvO *

is Kuclidean. We have this result :

Km'UJi'iin itii'iixut'ciiii'iit ix tt speciul m.sv <>f ///v//<-<Y//r /nc<<xi<r<'i/t<'>tf.

CASK II. The funilunii'tilitl puintx /'< />'<(/. We may take them

as l:i; 1;(>. The line equation of the fundamental conic is then

i l uu =ufu::= 0. (ti)

Since through every real point there go two lines of the pencils

detined bv ('>), it is necessary to take the constant K of 47 as

real if real lines are to make real angles with each other. We
will take l\ \ and lind, by a discussion analogous to that used

in vj 4S for finding </,

cosh^ (7)
\

/Y r.rv M'j" /r?

The formula for distance mav be found as in Case I, with the

result -'" - -*

If we take .r as the line at inlinitv and use nonhomogeneous
('artesian coordinates, we have, tor the distance between two points

('..y)*ml (*',/>, j= ,^-ZT^M
and for the angle between the two lines </./-}- /-// + c = and

'< + /''// + <' = <>,

cosli

('onsider now anv ti\ed point in the plane. I
; or eonvonieneo let

it be the origin
< >. Through (> go two lines of the pencils defined bv

the fundamental conic: that is. two lines drawn to the fundamental

points at inlinitv. The equations of the>e lines are ./'
//

(Fig. 4'J). Thev di\ide the plane intot\\'o regions, which \\c mav

mark as shaded and unshaded. It a point ( ./, in hes in the unshaded

region, jc" -if" ,- 'I; and il n lies in the shaded region, ./" -
i/~

<. (I.

( i 'iisei
|

iieiit lv, distances measured ITOIII <> are iman'inarv in the
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shaded region ;ui<l real in the unsluuled region. The boundaries

between thr two regions are lines ot length /.ero. The locus of

points equidistant from a are equilateral hyperbolas j.'~y~=k.
A line '/./ + l>t/ 0, passing

through ( >, is in the unshaded

region it <r //' < and in the

shaded region if <r />" , 0. Hence

an angle' with its vertex at <> is

real if both sides are in the shaded

region or both sides in the un-

shaded region, and is imaginary
if one side is in the shaded region

and one side in the unshaded

region. A line through () which

is not a line of /.ero length makes

an infinite angle with each of the

lines of /ero length. The two lines of /.ero length make an inde-

terminate angle with each other. In this respect as in other wavs

they are analogous to the minimum lines in a Euclidean plane.

These properties are of course the same at all points of the

plane. They make a geometry which differs widely from the

geometry of actual physical experience.*

* This L'cninetry h;is recently trained new interest because of its oeeurreiiec

in the theory of relativity, ('f. \Vil>oii ami Lewis, "The Spare-Time Manifold

of Relativity," I'rui'ftdinyx of the ^inurican Araili-in/j <>f *lrtx iital >ViYnrc,s (I'.U'J),

Vol. XLVII1, .No. 11.



CHAPTER VIII

CONTACT TRANSFORMATIONS IN THE PLANE

51. Point-point transformations. Consider now the transformation

defined by the equations

(1)

where s
}

. .r.,, .r, and
.r[, .r.', ./.' are point coordinates and

f^,
i
n , fs

are

homogeneous functions \vhirh are eoiitinuous and possess deriva-

tives and for which the .lacobian

'.'. '.': '.',

(
~'\

CJ
', '>',

cL r/, r/!_,

r./- r./', r./\

'/': '/'i ^ii

( ./'

does imt identically vanish.

liv the transformation (1) a point .r,
is transformed into one

or more points ./'. with possible exceptional points. Owing to the

hypothesis as to the .Jacobian, (Mjuations (1) can in general be

solved for
./;,

and any point ./' is therefoi'e the transformed point

ot one or nioie points ./ . \vith possible exceptional points.

('on>ider no\v a point M and its transformed point M'. If then-

is more than one transformed point, we will !ix our attention on

one only. If M describes a curve < delhied bv the equations

./. <,(/), .'.,= (/).(/). .r^ &,(>}. C2)

the point .!/' describes a curve /', the e(|iiatioiis ot wliieli may be

found b\
p

subsi nut ing from ( "J ) into ( 1 ). '! he direction ot < at

M i-- deiei'iiiiiied b\ ./, ./'
,, ./'..

and '/./',. '/./,. /./-., as sho\\-n in ( \ ),

:>1. 'I'll'' direction of /' at .!/' is determined in the same manner
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by -/(, ./', ./',
and <lj\, </./', <lj-[.

These latter six quantities are

determined by tlie former six, and lieiire the direction of <' at a

point .17' is determined by the direction of < at M. From this

follows the theorem

If (tt'i> <-f//wx < ami <\ t
iirt' ftiiii/i'tit (it a point M, tin 1

trdnxfonntnl

cun'i'x
<[

iiiLil '', <//' t<in<jt'nt at tltf trunxfurintfd point M'.

For this reason the transformation (1) is called a Contact

ti'dnxtvi'nmttoii.

If the transformation (1) is expressed in nonhomogeiieous
Cartesian coordinates, it becomes

*'=/,(>, //),

!/'=/,(''' .'/)

Now let p be the direction of a curve traversed bv the point
<lr ,

,

(./, //) and let // bt- the direction -~-
f

of the transformed curve.

\Ve have, evidently,
ct'n cf,'

CJT

P = :
'

The three equations

t

1'
~

are called an enlarged point transformation. Thev brin^ into clear

evidence that two curves with a common point and a common

direction are transformed into two curves which have also a

common point and a common direction.

52. Quadric inversion. An example of a point-point transforma-

tion as defined bv (1), ^-"'1, has alreadv been met in the case of

the collhieations.
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As another example consider the transformation

p.r(= .rrrs ,

p/ = ,y ;i
, (1)

p3=sXjZr

These equations can be solved when neither .r,, .r,, nor x
a are

zero into the equivalent equations

(2)

The transformation establishes, therefore, a one-to-one relation

between the points j-
{
and the points r' witli the possible excep-

tion of points on the triangle of reference A />(''. To examine these

points let A be as usual the point 0:0:1, />' the point 0:1:0, and

C the point 1:0:0, so that the equation of J/>' is a\= 0, that of

AC is jr
n
= 0, and that of />'(' is r.

t

= 0. Then from (1) any point

on the line J/> is transformed into />, any point on the line AC is

transformed into (\ and any point on the line, f-ic is transformed

into A. The coordinates of either A, />', or <", if substituted in (1 ),

give the indeterminate expression 0:0: 0, but it we enlarge the

definition of the transformation by assuming that (-) holds for all

points, including those on Alt, AC, and IlC, it follows that />' is

transformed into the entire line A/>, C is transformed into the

entire line A<\ and A is transformed into the entire line BC.

Consider any straight line with the equation

It is transformed into the curve

M+ XX+^X=0,
which is a conic through the points A, />', and C. In fact, the point

in which the line meets A/I is transformed into /), the point in

which the line meets AC is transformed into C', and the point in

which the line meets IiC is transformed into A.

It the straight line passes through one of the points .1, /', or (\

the conic into which it is transformed splits up into two straight

lines, one of which is a side of the coordinate triangle and the

other ot which passes through the Vertex opposite that side. In
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particular, consider a line j^+ X./;,= througli A. The first two of

equations (1) give jr\ + \j~'n_ for all points except the point A :

that is, any point except A on a line through A gives a definite

point on the same line. The point .1, however, goes over into the

entire line j~
3
= 0.

In a similar manner a conic is transformed into ;i curve of

fourth order, which passes twice through each of the points A, //, C,

since the conic cuts each of the, lines J/>, IK', ('A in two points.

If, however, the conic passes through one of the points A, />', <\

that point is transformed into a side of the coordinate triangle,

and the curve of fourth order must consist of that side and a

curve of third order.

In particular, a conic through A hut not through />' or (' is

transformed into the line IK' and a curve of third order through
//and ('. A nondegeiierate conic through /.'and Cand not through
A is transformed into two lines Ah' and AC and a conic through II

and (', hut not through A. Finally, a nondegenerate conic

through the three points A, />', C is transformed into the three sides

of the triangle of reference and a straight line not through its ver-

tices. These results mav all lie seen directlv or verified analytically.

Bv placing ./[=./; in equations (1) the locus of lixed points of

the transformation is found to be the conic

which passes through II and (' and is tangent to AH and AC.

It is not difficult to show that each point /'of the plane is trans-

formed into a point /'' in which the line AT cuts the polar of /'

with respect to tin; fixed conic.

This transformation is called a ^u/ii/ric hn'erxiufi to distinguish

it from the circular inversion, or simply inversion, discussed in the

next section.

EXERCISES

1. Trove the statement in the text that the point /' is transformed

into tin- point in which .!/' cuts the polar of /' with respect to the

fixed conic. Hcnee sho\v that /' and /''are harmonic conjugates to the

points in which /'/'' cuts the conic.
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3. Study tin 1 trans format ions

i

(2) p.*-,'
= .r

,.,-,,

p.r.
=

./',

= .r.r,

53. Inversion. Tlie transformation (1) of ">2 lias particular

interest and importance \vhcn the points /.' and (' an> tlic circle

points at infinity. We may then place ./.,= /, ./ = .r + ''/A ''.,
= ''

'//

and, usinijf Cartesian coih'dinates, writ*' the transformation in the

p (-///) = (./- /

pt'=jr+ifr

or, what is the same thing in nonliomogeneous form,

I>y this transformation a one-to-one relation is established

between the points (./, // )
and (./', //' ), with the exceptions that the

origin corresponds to the line at infinity, and conversely, and that

each of the circle points at infinity corresponds to the minimum

line joining it to the origin, and conversely. The circle ./'-(-//"-- 1

is fixed. Any point of the fixed circle is transformed into a point
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inside that circle, and, conversely, in such a way that if <> is the

origin, /' any point, and /'' the transformed point, (>/' . (>/'' = 1.

The transformation is called an inri-rxion with respect to the unit

circle, or a transformation by r>'fi/>ro<-ii/
ridlfii* witli respect to

that circle. The origin is called the ft-iifer of inriTxin, and the

fixed circle the <//</< ,,f ini',Txi'>n.

Remembering that a circle is a conic through the circle points

and applying the results of the previous section, we have the

following theorems:

/. A ittrnii/Jtt lint- not throni/h (lie renti-r <>f ////vrxA*// /x tnnutformetl

info n ''i/'i'/t- throni/h tin- i-i'ttti'r <>f inversion.

II. A xtro-ii/ht II in' throiii/h flit' I'l'tittT tit' itii'i'rni"H /x transformed

intu itsrff (iin<l (In- li/if nt infinit//').

III. A i'/ri'/i' H"t throut/h fit*' rmtfr nf hn'crainn /x tninsformetl into

it </'/'/!' tt'it f/iri/<//i (In- i-i'iitiT nf ini'i'rxinH (<n/>/ (Jn 1 ft/'u ninnniii/n

Inii-x through tin- i-fntt-r <>f invention"),

IV. A a /'c/i' tJifinif/Ji (Jn- t'l'iift-r <>f inrrrxion /x trftnttfornu'tl into a

utrciif/hf lii/i' >/of thmiujJi f/if ci'/ifi-r nf invention (<m<1 (In- f/r<> i/iiiriinioti

litn'x llirowjli (hi' I'i'tifi'r of invention <mi1 (In 1 line nt infinity').

V. A font',' /x trdnxformeil in i/?ni'r<il info n <><)>' of fourth "/'/'/

fht'oi/i/h tin' <'ir/'/i'
fxiititx

nt intiniti/.

VI. A i'oiii<' tln-otii/h tin- i-i'ntiT of 'nu'i'fxion /x transformed into

,i i-nri'i- of fltiril onliT throiiijJi (In 1

I'irrli- points (<nol fh<
: Inn- >it

in tin it I/ ).

If we take the iionhoino^encous form ('2) of the transformation

and apply it to the equations

ai + 1
1/ + < .- 0,

n(.r +/)+/)./+ >/+/----

we readily get theorems I-~IV without the clauses in parentheses.

It is in this simplified form that the theorems arc often given, but

they then fail to tell the whole story.

Let us denote bv / the transformation (1) and by .17 the trans-

formation III, ^1">. Then .)/
' transforms the circle ./"+//" k"

into the unit circle, / carries out an inversion with respect to the

unit circle, and .17 carries the unit circle back into the circle

jr+i/--=k-. The product of these three, namely .177.17 ',
which is
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the transform of / hv -I/, is an inversion with respect to the circle

x'jf- //-
= k~ and is represented by the equations

Irs

> +// =
,

./- + if

It is cvitltMit that a point /' is transformed into a point /'', where

()/'. ()!'' = If
2
, and that tlicorcins I-VI still hold.

It \vc dt-sirt- an inversion with respect to a circle with center (a, /<)

and radius /r. we may transform (8) by means of a transformation

which carries <> into (</,/<) The result is

k- ( .r
- n

)

' " =
., . r,

'

Ohviouslv theorems I V I hold for (
> ).

If the inversion (-) is written as an enlarged point-point trans-

rmatioii of the form (''>). ~>1, we have

-

j- -
i/- + '2

f>.r>/

Fi'iim tins it is easy to compute that if
/-,

and
/'.,

are the slojtes of

two curves through the same point, and if
/>(

and
/>'.,

are the slo]>es

of the two transformed curves through the transformed point, then

/'. /''
:

/', /' a
.

1 + /''./' ^/'i/'a

1 ln^ -hn\vs that the alible Itetweeii two curves is pi't'sei'ved by

t !;e t raiisfonnatioii. A ti'ansfon nation \\ hich preserves angles is said

t' 1 1" ni t'irin-t/. Ilenee -/// i n r, /'x/-,// /x n i'nn1'<>nnnt tr<t nyformation.
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EXERCISES

1. Show that any circle through a point/' and its inverse point/'
1

is orthogonal to the circle of inversion.

2. Show that, a pencil of straight lines is transformed by inversion

into a pencil of circles consisting of circles through two fixed points.

Study the configuration formed by the inversion of a series of con-

centric circles and the straight lines through their common center.

3. Show that parallel lines invert into circles which are tangent at

the center of inversion.

4. Show that, the (Toss ratio of four points collinear with the center

of inversion is equal to that of the transformed points.

5. Show that a point /' and its inverse point /'' are harmonic con-

jugates with respect to the intersections of the line /'/'' and the circle

of inversion.

6. If a circle is inverted into a straight line, show that two points

which are inverse with respect to the circle go into two points which

are svmmct rical with respect to the line.

7. Study the real properties of an inversion with respect to the

imaginary circle .>" -f- //-
= 1.

8. Show that an inversion is completely determined by two pairs

of inverse points.

9. From the theorem "four circles can be drawn tangent to three

given lines" prove by inversion the theorem "four circles can be drawn

tangent to three given circles which pass through a fixed point."

10. From the theorem "two circles have four common tangent lines"

prove by inversion the theorem "through a given point four circles can

be drawn tangent to two given circles."

54. Point-curve transformations. Consider nmv a transformation

defined by the equation

/(.rr ./,,
.r

:;
,

./-;, X, r.;)=0, (1 )

\yhere
./;

and ./' are point coordinates and /' is a function homo-

geneous in both
./',

and ./', con t unions in bot li set s of these variables,

and possessing derivatives \vith respect to both.

Let .!/ be a point with the coordinates ;/,-
If these coordinates

are substituted for
./',

in ( 1
)
and held fixed, the result in

'_;" equation

is that of a curve which we call an ///'-curve, the equation bein^

/'(//,, //,,, //.,, ./;, /', J\}- <, CJ)

and we say that t/if
i><>/n/

M /* //<///*/'////<'</ inf'.> thr ///'-<////<'.
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We >hall make the hypothesis that these ///-curves form a two-

parameter familv of curves such that one curve of this family goes

through anv '^iven point in any given direction.

Let A" he a point with the coordinates z[. This point will lie on the

and all values of the ratios
//,://.,://.,

which can be determined

from equation <
:'.

) will, if used in ( "2), determine an ///-curve

through A''. These values ot
// (

, how- ,];

ever, are given bv anv point .17 which

lies on the curve

/(./-,, .r,,, .r,, ?[,
: ,;;>= 0. (4) ,^

('all anv curve defined bv equation

(4) a /'-curve. We have, then, the

following result :
FIG. 43

All fmiiitx .17 irliii-li Hi' on a k-eurve are transformed into m 1

-curves

/r/i/i'/t pax* t/tl'<H(<//t
it

jiniiit
/\

'

( I'
ig. 4-)).

We can sav. then, that (In' k-furve i* transformed into a point I\' .

In fact, the tMiuatioii of a /"-curve is found by holding .r\ constant

in (1 ), just as the equation of an ///'-curve is found by holding .r

constant in the same equation.

It is further evident that all /c-ci/rrc.^ tr/u'rh jxixx throwr/li a point M
iin 1

transfnnned into
j><it/it*

l\
'

irlrieJi lit' on the cnrt'e ///'.

If anv proof of this is necessarv, it mav be supplied by noticing

that eijuation (3) is the condition that M should lie on /- and

that l\' should lie on ///'. ^
( '( msider now anv eu rve <,

not a /'-eur\(', delined bv the

equal i< ins

Fie.. H
'I he ///'-curves corresponding to

points .17 on i- form a one-

parameter I'amiK' of curves wliieli in general have an envelope; '',

and the <////, , /'.-< *///',/ /,, /,> tranxfnrmeil into ///< rnr/'i' /'.

To follow this analytically let M,(J\, :''.,, -/',) TKig. 41) l>e the

point on ' corresponding to the value A. of X, and let .17, be
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the point corresponding to the value A. -|- AX, the coordinat

.)/, being .r
}

+
A./-J, ./-(- A./-

.,,
./-^

f A./-.
t

. The t\vo points .)/ and .)/

are transformed into
>/>[

and ///',, which intersect in a point A", the

coordinates of which are given l>v the e(|uations

where the values of
./_

and A.r, are (n he taken from (">). The

point A"' corresponds to a /--curve through J7 and M .

Now let .!/, approach .'/,.
The curve m'., approaches the curve

;//(,
and the point l\' approaches a limiting point '/'' the coih'dinatcs

of which are given hy

r /' r /' ,<-/' (7 )- 7./- + '/./' -I- <Lr 0,

CJ-j
f

./'.,
r.r

wliere the values of
./-,.

and </./. are to lie taken from (">).

The point T' is obviously the transformed point of /, a /'-curve

taaigent to ' at J^. 'The locus cf 7'' is the curve '', which cor-

responds to c.

Equations (7) furnish a proof that <' is tangent to ///' at T'.

For, by differentiating the iirst of these equations and taking

account of the second, \\ c have

which, as in ^ :>1, determines the direction of <'. l.ut this is jus;

the equation \\hich determines the direction <>t
///[.

I he direct n in

ol '' is thus determined at the point 7'' l>v the direction ol ///',. \\

is therefore determined l>v the point M and the curve /. the latter

being determined bv the direction of <. lleiiee tn'n ruri'r* < /////<

<//>' f'Dt'/rtlf ili'i' t r<l nxt'i'l'/m <l ilit'i til',, fl/t'l'fX <' It'/it'i-Jl '// t'Uli/i'llf. I lie

transformation is therefore called a rmitiii't tr<inx1't>rnnttt"n.

Suppose now that the transformation ( 1 ) is expressed in non-

homogeneous ('artesian coi'ii'dinates b\ the equation
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and let /> be the slope -- of anv curve <; and // the slope --. of
r/.r df'

the transformed curve <'. Then equations (<>)
and (S) are replaced

in the present coi'irdinates by

cF cF A
- + /> 4

= 0,

.

termine
/>

and // when .r, //, ./', and
//'

are

ons ritten toether

which enable us to determine
/>

and // when .r, //

known. The last three equations, written together,

F(j; //, .r', / )
= 0,

r.r r/y

^ +X^ =
,

r.r' ry

are called an enlarged point-curve contact transformation. If

solved for r', //',
and // they may be written in the form

*'=/!<>, /A/')'

y'=f*(r>y>p)> 00)

//
=

./'
;!
(.r, //, ;>).

If, then, the point ( .r, // ) desoribps the curve r
_/' (X

s

), // =f.,( X),

we have />
- ' J

"

, and equations (1<I) Lfive the transformed curve
/,(.M

expressed in terms ot the pai'ameter X.

An example ot a point-curve transformation is found in the cor-

relation^ already discussed, since the eiiuations (1 ), ^-1-, mav be

written in the form

llrre the ///-curves and the /--curves are straight lines. If .r
;

de^crilirs a ciir\'e '-. the Mrai'_dit line ///' envelops the transformed

ciirvr ''. If tin- correlation is expressed in Cartesian coordinates,

it is ivadilv jmt into the form (1").
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EXERCISES

1. Express the gem-nil correlation in the form of equations (10).

2. Place in the form of equations (10) the polarity l>v which a point

is transformed into its polar line \vith respect to the circle j-~ -\- if = 1.

3. Kind the curve into which the parabola if <ts is transformed bv

the polarity of Ex. -.

4. Show that the curve into which the circle (./ /')"-}-('/ /.')"= r~

is transformed bv the polaritv of Ex. !J is a conic, and state the con-

ditions under which it is an ellipse, a parabola, or a hyperbola. Find

the focus and directrix of the conic.

5. 1'rove that by any polarity the order and the class of the trans-

formed curve is equal to the class and the order, respectively, of the,

original curve.

6. Study the transformation

i .'/

'-;-*

and find the curve into which the circle j--+ >f = 3 is transformed

by it.

7. Express in the form of equations (10) each of the types of

correlations f^iven in $ -I- and study them from this standpoint.

55. The pedal transformation. As another example of a point-

curve transformation we shall use homogeneous Cartesian coordi-

nates and take the equation

(.r'--f//'-)/-.rVV -if't't/=(). ( 1 )

II we take M as any point (./;_//: t), the corresponding ///'-curve

is in general a circle constructed on the line <>M as a diameter.

Ivxceptional points are the origin and the points at intinity. Il '/

is the origin, the circle becomes the two minimum lines through

the origin. If .17 is a point at infinity, not a circle point, the circle

t/i' splits up into the line at intinity and a straight line through O

perpendicular to o.M. If .)/ is a circle point /, the circle in' splits

up into the line at infinity and the minimum line <>/.



13:> TWO-DLMEXSIOXAL GEOMETRY

The /'-curve corresponding to a point A"' is in general a straighti
~

i o o

line through A"' and perpendicular to <>/\'. Exceptions occur when

A"' is the origin or one of tlie circle points at infinity, in which

cases the /--curve is indeterminate. It' A"' is any point on the line

at intiiiitv hut not a circle point, the /--curve is the line at inlinitv.

It A" is mi a minimum line through o, hut not at infinity, the

/-curve is the other minimum line through (). A /Mine does not

in general pass through <> or the circle points at inlinitv.

( 'on verselv, anv straight line which does not pass through the

origin, and is neither the line at inlinitv nor a minimum line, is a

/-line, the point A' heing the point in which the normal from ()

meets the line. This may he seen hy comparing the equation
".'' + I'll -t-i't () with (

1 ), thus determining./'://': /' tic: lc: <r-f//
J

,

which is the foot of the normal from (> to the line.

Take anv curve <. The tangent /--curve at anv point M is

the tangent line t, and the point '/'' is the foot of the perpen-

dicular li'oin <> on T. Therefore the tntmtfnnnetl CHITC <' <>f' ami

<////<' ! /s flu 1 /IK-UK lit tin 1

Ji'ft >>t tin'
pei'jH'Hilit'ufurs (Irairn from

tin' /('////
fa tin' fiitii/ftif liio'x <>f i'. The transformation is called

the i-<l<il (I'linxforiniitioti, and the point (> is the urii/iu of the

transfi irmat ion.

If the pedal transformation is expressed in Cartesian coordi-

nates as an enlarged point-curve transformation of the form
('.'),

vj
.) \. it becomes

,''-+ //'--- ./'./
//'//

= 0,

and these conations can he solved tor ./', //',
and

y/, giving

( //
-

;*./)/*
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EXERCISES

1. If (,> is the pedal t ransformat ion with the origin <>, /' a polarit\

with respect to auv circle with the center <>, and /,' an inversion

with respect to the same circle, prove the relations <J ----- HI', /' -~ I!<1,

It = (ll>.

2. Show that bv a peilal traiist'orinatioii a parabola with its focus at

the origin of the transformation is transformed into the tangent line

at the vertex of the parabola.

3. Show that lv a pedal transformation an ellipse with its focus at

the origin of the transformation is transformed into a circle with its

diameter coinciding wit h the major diameter of the ellipse. State anil

prove the corresponding theorem for the hyperbola.

4. Find the curve into which the ellipse -., -)-'., = ! is transformed

by a pedal transformation with its origin at the renter of the ellipse.

56. The line element. With the use of Cartesian coordinates the

contact transformations may be looked at from a ne\v viewpoint

bv the aid of the concept of the /i/n- </> //n /if. A line element mav

be defined as a point with an associated direction. More precisely

let there be given three numbers (./, //, y>), where the numbers

./and if are to be interpreted as the usual ('artesian coordinates

of a point in the plane and
/>

is to be interpreted as the slope

or direction of a line through the point. Then the three <{iianti-

ties taken together define a line element. A line element mav

be roughly represented by plotting a point M and drawing a short

line through M in the direction
/>,

but this line must be con-

sidered as having no length just as the dot which represents M
must be considered as without magnitude. There are -/_''' line

elements in the plane out of which \\ e may form a one-dimensional

extent of line elements by taking ./', //.
and

//
as functions of a

sinle arameter: thus.

There are two types of oiie-dinieiisioiial extents:

Tvi'K I. The fund ions f^ ( \ ) and _/',( X") mav reduce to constant

In this case the one-dimensional extent consists of a fixed poii

with all possible directions associated with it.
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Tvi'K II. The point ( /', // ) may describe a curve the equations

of which are the lirst two of (1 ). Then the third equation of (1)

associates \\ith every point of that curve a certain direction.

It is ob\ ioiislv convenient that the direction associated with each

point of the curve should be that of the tangent to the curve. The

necessary and sulh'cient condition lor this is that by virtue of (1 )

We should have </./' ////
= It.

A one-dimensional extent of line elements defined by equation (1 )

shall be called a mil"// of line elements when it satislies the con-

dition </./ -jnlif
= (). It is evident that the lirst tvpe of extents

always satisties this condition and that the second type satisties the

condition when the direction of each element is that of the curve

on which the point of the element lies.

Two unions of line elements have <-<>nt<i<-t with each other if they

have a line element in common. Two unions of the first type have

contact, therefore, when they coincide ; one of the lirst type has con-

tact witli one of the second when the point of the lirst lies on the

curve of the second: and two elements of the second type have

contact when their curves are tangent in the ordinary sense.

Any transformation of line elements detined by the equations

where the functions are bound by the condition

where p is not identically x.ero, is called a <-u/if,i,-t tr<inx1\irmcit'mn.

It is dear that by such a transformation a union of line ele-

ments i> transformed into a union of line elements and that two

unions which arc in contact are transformed into two which are

in contact.

'I he enlarged point-point transformation ( '*> ). >
;~>1, and the

enlarged point-curve transformation (It), x -~ 4. arc cases of the

general contact transformation ( - ). In tact, any contact trans-

formation may be reduce*] to one of these cases. 'I'o show this

let u< proceed to deduce from ( _' > ((piations \vhidi are Iree from

/'
and

/''.
I \\ o cases on] v can occii r.
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('ASK I. Tlu- first two equations in ('2) niav cadi he fret- t'nnn
/-.

Then (-([nation (
-I

) skives the condition

rf, rf., if-f ff-- <Lr + -^ <lif
-

>>'
- '

*/./ - // - '

,lif
= p ( //;/

-
;//./ ),o 1

r// rr ct/

which must he true for all values of the ratios </./ :
</_//.

I leiice \ve have

cf., ,'cf.-
r =

/><

1 y (
//

C.C C.f

whence, hv eliminating p and solving for
y', \ve have the result

that the contact transformation (2) is in this case of the form

^ './ r y

which is exactly that of
(
o ), ">1.

I>v this t raiisfoi'inat ion any oiic-ilimensional extent of line ele-

ments which form a union of the first tvj>e is transformed into a

union of the first tvpe, and anv union of the second tvpe is tran>-

formcd into a union of the second tvpe.

( 'ASF. II. At least one of the lirst \\\n cijuat ions in ( '1 ) contains //.

It is then jiossihle to tind one, hut only one, (.-(juation fn-e from

//
and //. Let that equation lie

/'(./. //, ./', //' ) 0.

From this equation we tind

( /', f /' / /'
,

f /' .

'l.i- + </>/ + ,/./+ ,
<1<i =0,

( ./' '
'I

' >' ' <l

which mu>t he identical \\ilh ('). \\\ comparison we find

p/>
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from which y and
/>'

can be found, with the result that the contact

transformation (^-) ran in this ease he put into the form

ex cy

cF ,cF
,+P. ,

=
>

ex' et/

whieh is exactly that of (9), 54.

r>v this transformation any union of the first type is transformed

into a union of the second type, each element of the former being

transformed into an element of the latter.

As an example consider the transformation

-

VI

If written in the form (
f>

) this becomes

The geometrical meaning- of these equations is simple. Any line

element ( r, //, //) is transformed into a line element (./', ?/', // ) so

placed that the point (./', //') is at a distance k from the point (./', //').

and the line joining (a*', //') to (^
-

, //) is perpendicular to the line

element. A transformed line element is parallel to the original

element. Otherwise stated, each line element is moved parallel

tn itself through a distance / in a direction perpendicular to the

direction of the element. Kach line element is therefore trans-

formed into two line elements. A union of the first type, consist-

ing ot line elements through the same point, is transformed into a

union consisting of the line elements of a circle with that point as

a center and ;i radius /-. Any curve < is transformed into two

curves parallel to r at a normal distance /- from <.

'I his transformation is sometimes called a ifi/iiti>in, suggesting
that each point ot the plane is dilated into a circle.
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EXERCISES

1. Show that the transformation

*'=;>,

//'= ''/'
-

//i

//= .'.

is a contact transformation and stiulv its properties.

2. Show that the transformation

SC'=:jr + JJ,

.'/'
= //+/'"

J''
=

1',

is a contact transformation and study its properties.

3. Show that any differential equation of the form/Mr, //,
-'

)
=

may be written in the form j'(s, //, />)
= and considered as defining a

doubly intinite extent of line elements. To solve the equation is to

arrange the elements into unions of line elements. In general, the solu-

tion consists of a familv of curves. Anv union formed by taking one

element from each curve of a familv is a singular solution. Note that

an equation j\.i\ //)
() can also be interpreted in this way, and that

the family of solutions consists of points on the curve
,/'(.'', </)= with

all the line elements through each, while the singular solution is the

curvey'i ./, // )
= with its tangent elements.

4. Study the differential equation // //./
= in the light of Kx. .'!.

Show that the singular solution is the one-dimensional extent of line

elements which consists of all elements through the oriirin.

5. Aiiplv to Kx. 4 the dilation ./'=./ .
//
=

// +
1 v , V* '

]'
=

!'. Show that the different ial equation becomes
//' //./' v 1 -f-/''"= 0.

"\\hat becomes of the singular solution and the familv of solutions'.'

G. Study Clairaut's equation, _//
=

//./ -f-_ ;'( // 1. by the method of

K\. .'> and show geometrically that the familv of solutions consists of

the straight lines >/ = <./ +/{<). What is the singular solution '.' Apply
to the variables in the equation the transformation ./.<' -f- ////'= 1 and

determine the effect on the equation and its solutions.



CHAPTER IX

TETRACYCLICAL COORDINATES

57. Special tetracyclical coordinates. We shall discuss in this

chapter a >ystem of coordinates especially useful for the treat-

ment of the circle. These coordinates are not dependent upon the

('artesian coordinates, though they are often so presented. ( )n the

contrary they mav be set up independently by elementary geometry
for real points and then extended to imaginary and infinite points

in the usual manner. It is therefore not to be expected that the

geometry in the imaginary domain and at y
infinity should a^ree in all respects with

that obtained by the use of Cartesian

coordinates.

The coordinates we are to discuss are -N

called tctraevelical coordinates, and we

begin, for convenience, with a special type.

Let <>X and <>Y (Fig. 4.*)) be two

straight lines of reference intersecting at

right angles at O, and let /' be any real point of the plane. Let

-Wand SI' be the distances of /' from o.\' and O )'. respectively,

taken with the usual convention as to signs, and let <>!' be the

distance of /' from <>, taken always positive. Then the special

tetracvelieal coordinates of /' are the ratios

= <>r~:NI': Ml': 1, (1)

from which it follows that the (juantities ./ are connected by
the fundamental relat H m

It is ohyioii> that to any real point corresponds one set of coor-

dinates and, conversely, to any real set of the ratios
./^

: ./ :

./-._: ./^

\\hii-li -ati-lV the relation ('2). and for whieli ./. <), corresponds

one real point /'. \\V extend the coordinate system in the usual
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.)

manner hv the convention that any set of ratios satisfying ( -
)

shall define a real or an imaginary point ot the plane, the ratios

0:0:0:0 being of course unallowed.

As the real point /' recedes from o, the ratios approach a limit-

ing set of values 1:0:0:0. To see this we write equation (1 )
in

the form

or" or~ oi'"

cos sin 6 1= 1 :

where 6 = the angle MO/'. The limit of the ratios of .r is there-

fore 1 : 0:0:0. Hence we say that lij (Jn- HX>' <>f tin'
#jn>ri<t/

ti'trn-

i'i/i'lii'nl coordinates t/it' plain' /x regarded <<* having <t van/If /<<>/ /'"hit

at ijiint>/. This point, however, is not the only one which must

be considered at infinity, as will appear later.

58. Distance between two points. Let c
(/^ ://.,://.,: // 4

) and

/' ( r^. ./.,: .r^:
./'

4 ) (Fig. 40) be two real points, and let </ <T, the

distance between them. Then, by trigonometry,

where the angle X<>/' and $.,= the angl

the definition of the coordinates and y
from the relations

ol' cos
0^-.=

''-, Or sin
}

= ''

\
'

-i -'4

or cos = ''--> ()(' sin ft
//:s

//* //..

the above equation can be written

( 1 )

This e(|iiation, obtained hv the use of real points, is now taken

us the definition of the distance between imaginary points.

Equation (1) can be written

(? ( - )
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where in accordance with the usual notation o>(.r, i/')
denotes the

polar
* of the form ol^.r).

From (T) it appears that <7=x when
// 4
= or when .r

4
= 0. ITence

tlif I"i-iix <>f the point* dt infinity ix defined by the equation .r = 0.

Since always (J')= ()
' tn(1 points at infinity satisfy also the con-

dition ./;+.<'/= 0, from which it appears that the point 1:0:0;

is the only real point at infinity, as we have already seen. The

nature of the locus at infinity will appear later.

59. The circle. If \ve take the usual definition of a circle, the

equation of a circle with center
//.

and radius / can be written from

(1 ), ~>8, as

This is of the type

and the relations between the coefficients <i
{
and the center and

radius of the circle are readily found. For we have by direct

comparison of (1) and (2)

From these and the fundamental relation
//.," + ,^3" // lt

V
4

= we

easilv compute the following values:

= -< l
\
nv

4
= 4 a,

2

,

af+ a 4 a ^r

anil the bilinear furin // f
it-J'i?/A-

i

is callnl tlif ]mlar fni'in "f (1). If by a linear transformation of thr variables

the furin (1) is transformed intn

its tiolar i.- t ran.-fnrmed int.
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which give the coordinates of the center ;m<l the radius of the

circle in terms of the coefficients </. of equation ('_').

These results, obtained prinuirily for mil circles, are now <vn-
v !~t

erali/.ed
/'// definition as follows:

Ert'ri/ liin'itr conation of 1 hi' form (2) reprext>ntx n <-//v/', the renter

{tn<l tlt>' r<itl'nis of which <ir>
:

ijiven /<// equations (-5).

We may classify circles hy means of the expression for the radius.

For that purpose let us denote the numerator of / in ('}) by ?; ('') :

that is
' >;() = ";+";- 4,vv ( 4)

We make, then, the following cases:

CASK I.
77 (a)

=^ 0. X<>nKp>'<-iiil <-f/-i-Ji'fi.

,V///'<v.sv .7.
f^
^ 0. Proper <'ir<-fi'N. Kfpiation (-) is reducihle to

( 1
) and represents the locus of a point at a constant distance from

a fixed point. Neither center nor radius is necessarily real, hut the

center is not at infinity and the radius is finite. The circle does not

contain the real point at infinity, since 1:0:0; will not satisfy

equation (2).

Xnfiniitf'. 2. <t 0. Ordinary sfnn'i/ht l/m'.*. The radius becomes

infinite and the center is the real point at infinity. The equation

may he written, by ^ ^T, in the form

aaXi> 4. f

,^ff> + <r
^

= o, (,/.; + ,/
:f
-^ 0)

which, as in ('artesian geometry, is a straight line. This line

passes through the real point at infinity. In fact, the necessary

and sufficient condition that equation (-) should be satisfied by

the coordinates of the real point at infinity is that a = 0. llenee

mi nfli i>ii nf fttriti'/ht ///"' nun/ /n' tiefin I'll >i* >'
nttnupei'ial fircL- //'/////

im*vi'x throitffh the real }ifnf nt
iiifitiitj/.

CASK II. 7;0/)=0. Sprriitl cirri?*.

Since it~ -f- <i-l
4

"!''.,.
the coordinates of the center may be written

//,
:

.?/._,

:
.'/,

:
,V 4

= - 2
",

: ",, :
.

:
~ - -'

r ( ">")

,v////,v/.sv 7. a ^ 0. /'"//// r //-/, x. The radius is xero and the coi'irdi-

nates of the center are those of a point not at infinity. 'I lie center

may lie any finite jioint. It is obyioiis that if the center is real, it is

the only real point on the circle, and hence the name point circle.

The point circles do not pass through the real point at infinity.
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Rv (-)< $ .~>S, the equation of a point Circle may be written

(D( .r. y)= 0,

\vliere <>(//) 0. Comparing with (4), we see how the equation

7; (
/ )

-= niav be deduced from (//)= 0.

.SW-.W.W .'. ^=0. Sfwinl xfrtiii/ht lint'*. The radius becomes inde-

terminate, and the center, given by (4), becomes 2<r:tf :rt
3
=0,

which is a point at infinity. The special straight lines pass through
the real point at iniiiiitv. In fact, a

xpt'<-ial atrdi'/ht line mm/ /<'

di fin- 'I <ia <i
xjii-i-iiil

'///>' >rhifh
pii.-iK,'s through the real point at infinity.

We have seen that the locus of all points at infinity is .>=<(.

which is the equation of a circle belonging to the case now being

considered, and with its center at 1 :":":<>. Hence we sav:

Tlif I'x-ux at in fin it i/ i* <(
npi'i-iiil

xt rai'/ld line whose center ?x the

r< <tl pniiit at infinity.

EXERCISES

1. ( 'oiisider the point circle ?.= ". Slio\v that it is made up of

two one-dimensional extents (''threads''^ expressed l>v the equations
.r : .r : .r :./. = : 1 :

-i- / : A. wliei'e A is an arbitrarv iiai'auieter. Sho\v
i j x -i i

that these threads have the one point 0:0:0:1 in common, but that

neither can be expressed bv a single equation in tetraeyclical coiirdi-

nates. Hence note the difference between tliis locus and that expressed

by ./- -f- //-
= in Cartesian coordinates.

2. As in Kx. 1. sho\v tliat the s]ieeial circle .?-
4

is composed of two

threads having the real point at infinity in common.

3. Examine the special circles r, -f- /r.
(

= and r, i.r = and show

that these two and the two in Kxs. 1 and '2 are made up of different

combinations of the same four threads.

4. Show that any special circle is made up as is the circle in Kx. 1.

60. Relation between tetraeyclical and Cartesian coordinates. I f we
introduce ('artesian coordinates, bv which, in Fi'_r . 4-~>,

.r: y: t=*OM: Ml': 1.

there exists for anv real point of the plane the following relation

between the special tetraeyclical coordinates and the ('artesian

coordinates:
ps^jr+fr
p-'~,

=
J't,

P-I-,
=

.'/',

P-'\
-- <*
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These C([uations, derived for real points of the plane at a finite

distance from O, can now be used to define the relation between

the imaginary and infinite points introduced into each system of

coordinates.

There appear, then, exceptional points. In the first place, we

notice that the tetracyclical coi'irdinates take the unallowed values

0:0:0:0 when .r -f //'
- - <>, f -..-. 0. That is, the circle points at

infinity necessary in the ('artesian geometry have no place in the

tetracyclical geometry. Furthermore, any point on the line at

infinity t = 0, other than a circle point, corresponds to the real

point at infinity 1:0:0:0 in the tetracyclical coordinates.

If the tetracyclical coordinates are given, the ('artesian coi'irdi-

nates are obtained through the equations .rt :
i/f

: t~ =
./-,

: .r : ./ . These

('([nations will determine a single point on the ('artesian plane

unless .r = .r = a* = 0. In this case / and the ratio ./:// is

indeterminate. That is, the real point at infinity in tetracyclical

coi'irdinates corresponds to the entire line at infinity in ('artesian

coi'irdinates. Any other point on the tetracyclical locus at infinity

.r = has coordinates of the form j- : 1 : / : 0, and no Cartesian

coi'irdinates can be found corresponding to these values.

Hence, /// CftrtcKinn cnf>r<JiH<ife8 n-t> ///// << rhnn
puintat^

(/' '//'/

points nt infinity^ icJu'ch <l'> tit I'.rfxf in tffrrti't/ctn'tit t'n<>rtlhi<ttt'>t< <ni<l

in ti't nii'//i'l n'lil I'niiril i iinti's irr find t'crtrtln jwintx, t/H' i)n<i</in<ii't( points

lit infinity, u'Jiii'h iln tint c./-/.s7 /// tin 1

( '<i rti-xi/i n I'nUnlinntex. 11V ii/*

fnul tfnit tin' ri'iiJ }>int nt Iitti/tif// in fit nit-//, //,-,// i'in'i'rdinatt'x I'or/'i
1 -

,sy/'///i/x
f/> iln' I'ntit'i' lini 1 nt n/titt/f// in (

f
tit'ffit/tin t'nffi'ifiniitt'tt, iin<l, <'<>/i-

ViTXt'lif, t/i'it mi
// }><>///f

lit inlinitil in ('iirtixnin I'ui'i/'iltintti'K ('ni'n'nimndit

in tin 1

ri'iil paint of infiniti/ in tt'trttt'ifrlii'til '<"'''/-, li/nit,x. \\ ith these

exceptions the relation between the coordinates is one to one.

The exceptional cases bear out the statements in s^ :>> and I as

to the artificial nature of the conventions as to imaginary points

and points at infinity. Since the ('artesian coi'irdinates are more

common, there is some danger ot thinking that the conventions-

there made are in some way essential. The discussion of this ic\t

shows, however, that the tetracyclical conventions ma\ be made

independently of the Cartesian ones, ami t he <_;vomet r\ thus deduced

is equally as valid as the ('artesian. As lon<_
r as either set ot

coi'irdinates is used by itself, the difference in the coii\entions is
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unnotieeable. It is only when we wish to pass from one set of

coordinates to the other that we need to consider this difference.

61. Orthogonal circles. Consider two proper circles with real

centers C
it
and (\ and real radii r

(i
and r,, intersecting in a real

point /'. Then, if ( /', /',, )
is the angle between the radii <'/' and

C, /'. and '/ is the length of the line (',/',,, we have, from trigonometry,

lint the angle between the circles is either equal or supple-

mentary to the angle between their radii. Hence, if we call 6 the

anle between the circles we have

If the equations of the two circles are

.'i+V,+ V,+ V4= ( 1 )

respectively, the formula for the angle may be reduced by (3), o9,

and (4 ), ^ -V,', to the form

_
-2 I + ,/ /, 4. f, I - -2 a h

cos0 = - ' 4=^

or, more compactl}',

eos0 =
;

?
> ( "' M

, (3)
\

17 (//)\ ;(/')

where 7; ( '/, A) is the polar of ?;('').

This formula, which has been obtained for two real proper circles

intersecting in a real point, is now taken as the iliihiifion of the~
1 .

angle between any two circles of any tvpes whose equations are

given by (1 )
and ( '2 ). We leave it for the reader to show that if

one or both of the circles is ;i real straight line, the definition

agrees with the usual definition.

The condition that two circles should be orthogonal is then

?/(", />)=<>. (4)

If the circle (1 ) is ;i special circle, the coordinates of its center

have been shown to be '2 </ : <i.,: <i
,

: '2 n . and equation ( 4 )
is t he
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condition that this center should lie on (_). Hence'/
*i

<'i<il <//</>,

whether <t j">int <-irff>' <>r <i x/n'rinl utriii'/ht line. in "rf/i</ti<il /<-

(mother circle when <nul
"/>/// ii'/ien the cfnti-r <//' tin' xin'ri<i/ <>//< li> *

i>n the other >//</'.

\Ve might equally well sav that a special circle makes anv angle

with a circle on which its center lies, since in Midi a case cos # in

('} )
is indeterminate.

It is possible in an inlinitv of WHYS to find four circles which

are mutuall orthoonal. For if

is any circle, the circle

V/vr,= (u)

mav l)e found in x' ways orthogonal to ( 5), since the ratios
/-,

have

to satistv onl\' one linear equation of the form (4). ('itvles (
.">

>

and (t!) being fixed, the circle

5>V,-=0 (7)

IIKIY be found in an infinite number of wa\'s orthogonal to (>) and

(fi), since the ratios . ha\e to satisfv oiil\' t\\o linear ecjuations.

I''iiiall\', 1 he circle

V.,,-,^0

may be found orthogonal to (">), <
i| >, and (7) !>Y solving three

linear equations for e..

It is geometrically evident that at least one of these circles is

imaginary.

EXERCISES

orthogonal and find a fourth circle orthogonal to them.

5. I'rovr that r --. 0, ./,
..

-
0. ./ = are iniituall\ ort lio^nnal. ''an a

fourth cin-lr In- found orthogonal to them '.' K.\]ilain.
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6. Find all circles orthogonal to the circle at infinity .r = 0.

7. I nid the
t'(|iiat

ions of all circles orthogonal to the point circle

.,-,

-= 0. lion- do they lie in the plane '.'

8. Find the equations of all circles orthogonal to the real proper

9. Show that all circles whose coefficients <i
( satisfy a linear equation

, ,/ -)_,.// 4- f a 4- r n =0
1 1

'

-1 -I
'

:i 3
' 44

are in general orthogonal to a fixed circle and find that circle.

62. Pencils of circles. Consider two circles

Vi+ 'Vr'J+ 'V':!+ 'V'4
=

' )

I .r 4- ?> ./' -f ft .r -f I .r = 0. ( 2 )
1 1 2 3

'

:i 3
' 44

Witli reference to them we shall prove first the following

theorem :

I. Ami tn'" fin'/!'* hlti'l'SCCt in tiro <tm] <i>//// f/rn
jmftifx. T/U'M

ft

niiii/ /' nitinciili'nt, in it'hifh cnxi' tf/c n /'</>'* <tr>' xiiitl to /"' t<i</t'tit.

To prove tins we note that if equations (1) and (2) are inde-

pendent, at least one of the determinants, "/', "/',-.
must be different

from /.ero. Hence we can solve for one pair of variables, .r. and .r
;
.

in terms of the other two. For example, we mav find from ( 1
)
and

( '2 )
./-j

= f
}
.r,+

''.,-'',.
J'.,=

''...''.,
-f-

'',-'",
1 ' these values are substituted

in the fundamental relation (./)-- 0, there results a (juuilratie

cijiiation in ./ and ./

4
. This determines t\\'o values of ./-.

;

: ./ . and

from each of these the ratios .r
{

: .i\, are determined. This proves
the theorem.

It is ''videiit that the circle points at infmitv which are intro-

duced as a convenient fiction in ('artesian <_;vometrv do not appear
here. In ('artesian ovometrv it is found that there are alwavs two

sets of coordinates which satisfv the equation of anv circle, and we

are consequently led to declare that all circles pass through the

same two imaginary points at inlinitv. I>v the use of tetracvclical

coordinates there are no two points at inlinitv common to all

circles. In fact the circle <\ > meets the locus at inlinitv ./ -- ( > in

the t wo points '/.,
T ,i / ; ,< \ j in \ 0. which are not the same for

all circles.
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Theorem I holds ot course lor the ease in \vhicli the chvlo are

straight lines, one ot the points ui intersection bring alwavs the real

point at infinity. Two straight lines which are tangent at the real

point at inlinitv are parallel lines in the ('artesian geometry.

Consider now the equation

where X is an arbitrary parameter. For any value of X (
-\

) defines

a circle which passes through the points eoninion to ( 1 > and ( '1 )

and intersects (1) and (-) in no other point. The totality of the

circles corresponding to all values of X forms a ///*// <<;'////, .

If (1 )
and ('!) are real circles, the pencil (')) mav lie of one of

the following tvpes :

(1 ) proper circles intersecting in the same two real points:

('!) proper circles intersecting in the same two imaginary points :

( o ) proper envies tangent in the same point ;

(4) proper concentric circles;

(
.")

) a pencil of intersecting straight lines;

(ti) a pencil of parallel straight lines.

II. In ///(// I'l'ic-tl ,,f <-ir<-lfs tlnTC t* "//< oii'l /i/// "/if atnit'i/Jit hiti',

u/t/^xft tin 1

jH'/f/l i-'iitxixfx >'nttr<-lti <>f tstruit/Jtt li/n-x.

The condition that ('>) should represent a straight line is

which determines one and onlv one value of X unices lioth <t and

/' are y.ero. In the latter case all circles defined by (
: >

) ;"'*' straight

lines. This proves the theorem.

'1 he straight line ol the pencil is called the /</<//<// tij'tx ot anv

t\S'o ein-les ot the pellcll. Its eipiatloli is

This is a special line when

("./'
-

"'.,)" 4- (
"'- "')" "
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and tin- equations (1), ('2),
and (-\) represent concentric circles,

and the radical axis is the line at infinity .^=0.
In all other eases the radical axis of two real circles is a real

straiht line.

///. //; 'i n ii i-)t>-i/ of i-irclex (here are two anil on/// ttm (ixnr r>r

i i/i't'itictrii ) Kfifi-ial
<//</< '.v, unless the pencil nunaixttx entirely of special

clri'l, *.

l'>\ .">< the condition that (}) should be a special circle is

il ( 4- X/')= (\

or ?; (<>') +'2\i) (a, /<
) + X-; (

'
)
= 0.

This etjiiation deti-nnines two distinct or equal values of X

unless it is identically satisfied. Hence the theorem is proved.

If the pencil is defined by two real proper circles, the special

circles are point circles, since by II there is only one straight line

in the pencil and that is real and nonspecial. It is not difficult to

show that if the circles of the pencil intersect in real points, the

special circles have imaginary centers ; if the circles of the pencil

intersect iii imaginary points, the special circles have real centers;

and if the circles of the pencil are tangent, the centers of the special

circles coincide at the point of tangenev.

IV. A I'lnit' arthof/iiiiid f'.i tn'n <//</(> <>f a pem-il /* vrthoyuHid to all

<v/v/rx (/ the />en<'tl.

Let V'>r= be orthogonal to (1) and (_!). Then

7/(r, rt)=0, 7>(>, /0= 0;

?;(<, n + X/-
)
=

7; (<-, ^~)4-X?/(c, /-)=()

lor all values of X. This proves the theorem.

Il lollows from this and v< il that a circle orthogonal to all

eirelrs o| ;t pt-ncil passes through the centers of the special circles

ot the pencil, and, con verselv, a circle through the centers of

the special circles is orthogonal to all circles of the pencil. If the

pencil has onlv one special circle, the orthogonal circles can be

determined as circles which pass through the center of the special

circle and are ortliogonal to one other circle of the pencil, sav the

radical axis.
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These considerations lead to tin- following theorem :

V. F<r nn if jn'iK-11 <>f i-in-li* //// f.rixtx anotht't' j-n<-i( m<r/i t/t<it n//

cirdtK of citltiT pencil tt/'i' orthoijonnl to dl! nt'flfx <>1 thf <////'/, <nt<l

/mi/ I'in'lr icJiich /.s urtJuxjoHdl to nil <v'/vA'.v '//'<///<
JH'/K-/'/ fiflun/n t tJif

othiT. The points CH//I ///"/i (<> th.' f/i'i'lcx i >f OKI'
jit'Ki'il

nrc tlif rt'/ttfrx

of th>'
ttfx'ct'nl

rirch'fi of tin- of/it
1

/'.

Fig. 47 shows sm-li mutually orthogonal pencils.

EXERCISES

1. Show that two real circles intersect in two real distinct points,

are tangent, or intersect in two conjugate imaginary points according as

[TK'sW-^M^iO.
2. Show that the point circles in a pencil of real circles have real and

distinct, conjugate imaginary, or coincident centers, according as the

circles of the pencil intersect in conjugate imaginary, real and distinct,

or coincident points. In the last case show that the centers of the point

circles coincide with the point of tangencv of the circles of the pencil.

3. Show that circles which intellect in t he same t wo
j
points at infinity

are concent ric.

4. I'rove that the radical axis of a pencil of circles passes through
the centers of the circles of the orthogonal pencil.

5. Prove that the radical axes of three circles not belonging to the

same pencil meet in a point .

G. Take V,,^^ 0, V /,,.,,..<>,
V,.,.. = 0, any three circles not be-

longing to the same pencil, and show thai ^
t </, -f- A/'--r /*'',

i '',--"

defines a two-dimensional extent of circles (a rirrli-
<-,,/,,/,!,

., \ eon>i^tiiiLr

of circles ort hogonal ton fixed circle. I >iseuss t he nnml ier a nd jio-^it
ion

of t he point circles, the st raigl it line<, and t he special lines of a complex.

7. Show that the totality of straight lines form a complex. To what

circle are t he\- ort IK >gonal '.'

S. Show that circles common to two complexes form a pencil.
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63. The general tetracyclical coordinates. Let us take as circles

of reference any four circles not intersecting in the same point

and the equations of which, in the special tetracyclical coordinates

thus far used, are

and let us plac

PA^=

Since the four circles do not meet in a point their equations

cannot he satisfied by the same values of .r, and therefore the

determinant of the coefficients in (1) does not vanish. Therefore

the equations can be solved for .r. with the result

where A. is the eofactor of a, in the determinant of the, coefficients

of (1 ), B the eofactor of
/^,, etc.

The relation between the ratios ./ : .r, :./'.,: ./ and A'
{

: A, : A', : .\"
4

is therefore one to one, and the latter ratios niav be taken as the

coi'irdinates of anv point. These are the most general tetracyclical

coi'irdinates.

A ^eonu-tric meaning may be given to these coordinates as

follows :

It the circle with the ('artesian equation

'/(.'-+//-)+ IJT + '// +(7 =

is a real proper ciivlc, and the point /'(./', // ) is a real point outside

ot it. then the expression

i- proportional to the fnnrt-r of /' with respect to the circle : that is,

to ! he length of the square of the tangent from /' t,o t.he circl' 1

. It
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7' is a real point inside the circle, the power may lie defined as the

product <il the lengths of the segments of any chord through /'.

Also, if

/,,. + ,. v + ,/ = o

is a real straight line, the expressinn

is proportional to the length of the perpendicular from any real

point to the line.

l>y yirtne of til) these relations hold for a linear equation in

tetracyclical coordinates. Of course if the [mints, circles, or lines

involved are imaginary, the phraseology is largely a matter of

definition. We may say, then :

Thf ntoxt general ti'tracyi'lii'al nx'irdinatex f a point cnnsixt of (/

rutiox of four quantities each of which ix equal to <i constant tiinf* tin'

pou'i'r of //(,> point irith reference to it i-lffle of reference, o/\ In raxe

tJie circle of reference /* a xtrn'njht line, to a constant fi//ti'x the leiujth

of thf perpendicular from tin' point to ?//> line.*

I>y means of (1) the fundamental relation o> (./)= goes o\er

into the new fundamental relation

and the polar equation w(.r, //)
= becomes

here the determinant
\nik

\ does not vanish.

The real point at infinity has now the coordinates X^ :

A'^
: A'

{

: A'
4

= 0:^/3^7:8, and hence liy a proper choice of the circles of

reterciice may he given any desired coordinates. The locus at

intinity has the equation

* Si line aut tmrs prefer tu ilctinc t lie cmirilinate as \ lie c|iint ieiii nf I he |n
> \\vi- > 'f I he

pnilit iliviileil l>y the railillS. silll'C this i

jlli
it it-Ill LT'H'S HVfl' illl" I wire the lenuth i'l'

the [.erpenilieiilar 1'niiii the ]Miint tu a straight lim \\lieii the nuliu.- nl' the rin-li 1

heeolnes illlillite. This tlelinit ii m fails if the ril'ele uf reference i> a |"'int rirele

when the e'in-e>]iMiiilillu i''M)l-i|ili:ite is the >.|liare i if the diMaiiee nf the ptiint fl'iilll

the center uf the eilvle. Siliee tile 1-1 ilistulll \\hieli may lliultiply eaell i'i ii'iI'ililUlti
1 is

arliitrar\. \\ e prefer the iletinit inn in the text.
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A circle \vith the equation

V'l+V2+V3+ a
4-
r4=

luis in tin.
1 iH'\v coordinates the equation

By virtue of these relations the conditioii for a special eirele

j,t() becomes a new relation

and the eundition ?/ (_a, /<)
= for orthogonal circles becomes

H(,l, 70 = 2/,,AA=<>. (7)

The form H
( . I ) may be computed directly from 11 (A') as follows :

l!v formulas (4) and ('2), .

r
)S, the et|uation of a point circle

with the center K is

H(A", }')= 0.

Hence, if A^+A^+A^+A^X^
is a point circle, we must have

^,-=,-ii'i+ â+ ai
r

8 +fl>V C 8 )

These (Mjuations can be solved for
)',

since the determinant '

^.^
i

docs not vanish. But T bein^ the coiirdinates of a point must sat-

isfy the fundamental relation (3). Substituting, we obtain a rela-

tion between the .I's to be satisfied by any point circle. This can

b- nothing else than the condition

H (-0=0.

By virtue of (*) we have, accordingly,

II 00= MK )').

But (*) can be written <r.\. -

< }\

'

Hence we have H
(' )

_ ATI ( >'). (9)
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Also the form fl(.V) may he computed from the form II (A) as

follows: If A is a point circle, equation ( 7 ) expresses the condition

that the center of A should lie on a circle l>. But if *\\ are the

coordinates, ot the center ot A, this condition is

Hence, hv comparison with (7),

M^A,,. !, + /-. L-H ;1 .l. + /'
l4 ./<. (10)

Since./ is a point circle its coefficients A
i satisfy (

'

). Therefore.

if equations (1<>) an- solved for J, and the result suhstituted in

(
ii

), we have a relation satisfied hy the coordinates of any point.

This can only be ^ \ o

By virtue of (10) we have, accordingly,

But (In) can he written <r.V =

rA
t

Hence we have ft ( U- A" II
( ,1). (11)

\cAJ

64. Orthogonal coordinates. Particular interest attaches to the cast-

in which the four circles of reference are mutually orthogonal. If

the circle .\'.= is orthogonal to the circle A\ 0, \\-e have, from ( 7 ).

vj <:;, /,.
(

. il. Therefore, for an orthogonal svsteni of coordinates.

we have
H (. I )=/-,,/,-+ /",.r;+^- ':=

+ /'-
4 -<;.

Mipiat ii ins ( 1 o ), ;< fl:}, ^ive

p.\\= Av.l,.,

whence the tundamental relation tor the point ooinxlinates is

\\'ithoiit ehangijiLj the coi'irdinate circles it is ohviously pos>ille

to change the coft'ticieiits in ( 1 ). M':!. so that
/.,

!. Then we have
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A special case is obtained by placing

where
./_

are the special coordinates of ^ ->7. The four circles of

reference are a real circle with center at (> and radius 1, two per-

pendicular straight lines through o, and an imaginary circle with

center at <> and radius /.

65. The linear transformation. Let ./. be any set (special or

general) of tetracyclical coordinates where &>(./)<) is the fun-

damental relation, and consider the transformation defined by the

equations
f'~ ,!*!+ V,+ <V-,+ <V>
p4=s

al*i+<*&ra+va+*f
*>

p*= Vi+<+ Va+'VV
p.r( = a .r-f- a x -f <f /' + <t .?* ,
' 4 .|1 1

'

4-J
o I

.,;; ;;
I

.,4 4)

when 1 the determinant of the coet'licients
'

<t a .

:

does not vanish and

where ./' satisfies the same fundamental relation as .r
{
.

J>v means of (1 ) any point ./;
is transformed into a point ./, and

since the equations can be solved for
./_,

the relation between a

point and its transformed point is one to one.

By means of (1), also, any circle

a ./ -f- <' '' + '' '' + " '' = ( ^

i i
'

2 i;
'

3 a
' -14

is transformed into the circle

where P'<[-~ -\
t \\\- '\;-'

(t
i + -{,,:', + ^i^.1-

Now, if
//_

is a fixed point. j\ a variable point, and
//'

and
./[

the

transformed points respectively, the equation

w(./-, #)=
is t ransti irnied into 1 lie equal i< >n

ro ( r', //')
= 0,

since the t-quat n iii f<> ( ./ )
= is transformed into ro (./')= 0.
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That is, /<//
tin' tranxtnnnatinn (1 ) special cirrlt'x <tr>' tr<i>ixfr>iit'</

info xpccittl i-irc/i-ft, tin- <>'//{<'/ of each special circle ocini/ transformed

into tin' center <>t tin' transformed circle.

It follows troiu the above that nonfpecial circles are transformed

into nonxpecial cir<-/fx, for if a nonspecial circle were transformed

into a special circle, the inverse transformation would transform a

special circle into a nonspecial circle, and since the inverse trans-

forination is also of the form ( 1 ), this is impossible.

We mav accordingly infer that hv the transformation (1) the

equation ?/(>)= is transformed into itself.

\Ve may distinguish between two main classes of transformations

of the form (1) according as the real point at intinitv is invariant

or not. The truth of the following theorem is evident :

// a linciir transformation leaves, tin' mil
//"////

,it infinity invariant,

eren/ iftrat'i/ht l/>ii' is tntunformed into <i straight //// <nnl >>',/>/ j>r<>j
/

rifflf into a i>rp<'r </'/</>'. It' <i lim'nr tritnxfnrwrtfinn tniH#f<>r)n>t f/f

n'/if point <it infinity into n point < > cnnl transforms a point (>' into

tin' fi'iil point nt /'/itiii/t//, nni/ xtntii/lit Hin 1 ix transformed info a <-lr<-1<-

throiii/h <
>, <tml <im/ ///'/ thnnujh < >' i* transformed into a straiylit ////.

Since, as we have seen, the c(|iiat ion ?/('')= " i s transformed into

itself, \\'c mav write
*/ (''') = /">/(")< the value of / di'pt'liding on

the factor
/3

in (1). \\'ith the same factor we have
?/ (//)=/.?/(/.)

and ?/("'. /'')=/-?/ (<r, //).
Hence by (

: > ), '"'I, the angle between

t\\o circles is equal to the angle between the two transformed

circles. Tin 1 liin'itr transformation i* tJifrefnre conformaL

66. The metrical transformation. We shall pro\e lirst that n>i;i

transformation of tin' metrical i/roup c<m o,-
ejrprt'*>ti'J

ax a Innin-

transformation of tt'tracrfdieal coiinlinatest.

We have seen in ^ 4.) that a transformation of the metrical group
is a linear transformation of the ('artesian coordinates ./ and //

together with the condition ( ./'"+ //'" )
--- /r (./''+ //'*').

It fol!o\\s from

this that the transformation can be expressed as a linear transfor-

mation of the special coordinates of sj ;~>7. But the general tetra-

cyclical coi'irdmates are linear combinations of the special ones.

Hence t he the* irein is
[
in >ved.

Since a metrical transformation transforms straight lines into

straight lines, it must leave the real point at infinity invariant.
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( 'on verse 1 \. tin i/ liih <ir ti'unxfornifltion f tetrtii'UcUi'dl cutifiUnntcs

tchi''h 1< 'iti'fn tin- ri'iil jmint iff infinity ini'<tn<int fx n tranxfonnntivn <>f

th> i/ii'trfi-'il ///"///>.
This may lie shown ;ts follows:

If thf real point at infinity is invariant, the locus at infinity is

transformed into itself, since it is a special circle with its center at

the real point at intinitv. Therefore any linear transformation of

ovne ral tet racvclical coordinates which leaves the real point at infinity^ . i *

invariant is equivalent to a transformation of the special coordinates

of vj ~>7, which leaves the point 1 : : ; (I invariant and transforms

the locus ./ = into itself; that is, to a transformation of the form

=

Since r!*+ ./f
-

stf = Jr
(./-; 4- ./;

-
./v4 ),

we have, for the coefficients, the conditions

k2

al^ a
*i
= ai*+ n^= au= "3'

Now the last three equations of
(

1 ) are equivalent to the equa-

tions in Cartesian coordinates

./'
~ n .> -\- n i/ -f- a

,
,

and the conditions imposed on the coefficients are exactly those

necessary to make this a metrical transformation. The first equa-

tion in ( 1 ) is a consequence of the last three equations in
(

1
)
and

the condition ( '1 ). In fact, the coefficients a,,, 'i,,. a.,, and 't.,., may

first he determined to satisfy equations ( > ), the coefficients a, and

'r,
(

may lie assumed arliit varilv, and the coefficients a , n^. ft ,

and n^ are then determined liy ( '] ). This jiroves the theorem.

67. Inversion. T\\n points /'and /'' are ///'wx/- witli respect to a

nonspecial circle <' it e\erv circle through /' and /*' is urtho^onal

to ('. I
;
i-oiu this it follows that if (_' is a straight line two inverse
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points art- symmetrical with respect t<> that line ; that is, the straight

line /'/'' is perpendicular to <
'

and bisected liy it. By a limit procos
it is natural to define the inverse of a point on the straight line (.'

as tin 1

point itself.

If (' is a proper circle with radius / and center J
(J*'ig. 4*), the

inverse of ./ is the real point at infinity, since the circles which

pass through A and the real point at infinity are straight lines

perpendicular to <'. If /' is not at .1

nor on (', the straight line /'/'' must

pass through .1, since that line is a

circle through /' and J'' which by defi-

nition must he orthogonal to '
'. Take

now the point M midway between /'

and /'' so that

AM---: \ (.!/' + .//''),
, . , KM.. 18

and with .'/ as a center construct a

circle through /' and /''. If // is the radius of this circle.

/,'= l(M>' -AT).

I>v squaring the last two equations and subtracting one from the

other, we have
, ,.- /.-_ , /. < /,'

. i . M / 1 ^ i / _ i 1 .

I>ut the condition foi- orthogonal circles gives

/.''-+ r*A.\r= 0.

Hence \\'e have as the condition satisfied by two inverse points

with respect to a circle with radius / and center .1

.I/'. .l/
>? = r. ( 1

)

Conversely, if /'and /'' arc t\\'o points so placed that the line

/'/'' passes through A and the condition ( 1 ) is sat is tied, t he line /'/''

and the circle described on /'/''as a diameter are ea>ilv [irovetl tn

be orthogonal to ('. Then any circle through /' and /'' is orthogonal

to (' by theorem IV. ^ (I:!, lleiice /' and /'' arc inverse points.

The condition (1) shows that if one of the point< /'and /' i>

inside of the circle, tl ther is out>idc of it. The condition holds

also for the point .1, since if .I/' <
). .I/'' s. . \\\ a natural

extension of the definition of inverse points, condition ( 1 ) can aUo
1

be taken to hold for a point on the circle <', so that we ma\ >av

that any point on the circle (' is its own inverse.
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It is to be noticed that inverse points as here defined are also

inverse in the sen>e of ^
~>-

}

> if the circle (' is a proper circle, but

the definition c/iven in this section is wider than that in ;>o, since

it holds when the circle becomes a straight line.

An iivfi'ti'in with respect to a nonspeeial circle (' is defined as

a point transformation bv which each point of the plane is trans-

formed into its inverse point with respect to that circle. We shall

proceed to prove that <mi/ inr,'t'x/<i ''<in /
ri'^rcKi'nti'd li/ a lin^nr

tritn*i'<inn<ttin </ /'/'/'//<//<// fn'r</!>ift'*. It is first of all to

be noticed that bv an inversion each point of the circle (' is

left unchanged bv the inversion. This condition is met bv the

transformation x^
p.i-.

A.,r -f ". > >'

kJ\, (- )

^hereN <,
.r,

< is the e(|iiation of ( '. Now let ^ /,..'',
= be anv

circle through j\ and its transformed point .r'. Since ^ ''','',=
" and

V/vr'= 0, we have, from
( 2),

,, f, 4- /, 4- /, _f- ,/ /, = i). /;>)11 J J :',;)' 44

If V/',,/-,
= o is orthogonal to (

', we have

,..i

(4)

and therefore if (4) is satisfied by all values of /-
!

which satisfy (''>),

It remains to determine X. For that purpose we use the con-

dition that (i) (./)= l( and w(r')=0, and lor convenience writiii'_r A

in place of the svmbol "^ <'
t

.i'
f

. \\'e have

But CD ( it
) co[ -} and. bv

1

II.-:

+ '
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'

V(
'

L K '

A L ( '< )(' JKDIN A T KS 1 -V. )

rr , c 1 y-v ro) A" ^--v K
Therefore &>

(.r, a)
= -

^.r,
- =

^ 2/V,
=

.,
-1,

and, from (">),
A. = <y(a) = V (,'')

We have consequently built up the transformation

\vhich is an inverse transformation, since it transforms any point r
t

into a point ./' such that anv circle through r, and .r( is orthogonal
to f. The theorem is therefore proved. It is to be noticed that the

transformation is completely determined when the circle (' is known.

68. The linear group. We are now prepared to prove the fol-

lowing proposition :

Any linear transformation l>i/ ?/'///<// tJn' r>'l point t ///thtif// i#

invariant <>r ?'.*' transformed into n paint n<>t <it infinity ix tin' prihi<'t

(if <m invention <in<l a metrical transformation,

To prove this let T be a transformation of the form

p.r'
-

a,^ + ,-:, + a
i3
r
s + arf\,

l)v means of which the relation a>(af) is transformed into itself.

If the real point at infinity is invariant, the transformation is

metrical ( <!tj).
If the real point at infinity is transformed into a

finite point J, let A be taken as the center of a circle ("with respect

to which an inversion 7 is carried out. By /the point A goes into

the real point at infinity. Hence the product IT leaves the point at

infmitv invariant and is therefore a metrical transformation, ('all

it .)/. Then IT !/

whence 7'=/-'.J/=y.lA

\Ve have written /"' / because an inversion repeated gives the

identical transformation, and hence an inversion is its own inverse.

The tet racyclical coordinates are adapted to the study ol the

properties of figures which are not altered bv this group of linear

transformations. In the g<'ometr\' of these properties the straight

line is not to he distinguished from a circle, since anv piunt ol the

plane mav be transl'ornieil into the real point at intinitv. and thereby

anv circle mav be transformed into a straight line and vice Versa.

Anv pencil of circles mav in this way be transformed into a pencil
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of straight lines and nianv properties of pencils of circles obtained

from the more evident properties of pencils of straight lines.

The distinction between special and nonspccial circles is, how-

ever, fundamental, since a circle ot one of these classes is trans-

formed into a circle ol the same class.

EXERCISES

1. Write formulas (C>\ ;? ('(7. for the special coordinates of ." and

for the orthogonal coordinates of j (11.

'2. From (Co, C>7. obtain in the coordinates of ? f>7 the formulas for

inversion on the circle of unit radius with its center at the origin, and

cheek bv changing to ('artesian coordinates.

3. Show from ((>), C>7, that inversion on a fundamental circle

of a svstem of orthogonal coordinates is expressed by changing the

sign of the corresponding coordinate and leaving the other coordinates

unchanged.

4. Prove that a plane ligure is unchanged bv four inversions on

four orthogonal circles.

5. Show that three inversions on orthogonal circles have the same

effect as an inversion on a fourth circle orthogonal to the three.

(>. Prove that the product of two inversions is commutative when

and only when they take place with reference to orthogonal circles.

7. Show that the product of two inversions on two straight lines is

a rotation about the point of intersect ion> of the two lines.

8. \\\ Kx. 7 show that the product of two inversions on the circles

(' and ('_, can be replaced by the product of the inversions on two cir-

cles
''I

and '
'.'

if
*"|

and f
'.', pass through an intersection of '^and <'

and make the same angle with each other.

'.(. ('oii>ider the curve defined by the quadratic equation

v
,,-,,.,.

= o.
-*-^

Show that any circle or straight line intersects the curve in four

pomi^. It the coordinates are the special coordinates of S T7. classify

the curve according as (1) il does not pass through the real point at

infinity, i '_' > \\ passes once through the real point at infinity, i
."> i it

passes twice through the ]-eal point at infinity. <H>tain the ('artesian

for each o|' tlie classes and note the ivl;itii>n of the curve to

tin circular point- at infinity. Note that the above classification is

inie-^ciil ial from the >tandpoint of the linear group <if tetracvdical

t.ran>fi irma tions.
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69. Duals of tetracyclical coordinates. \>\ anticipating a little of

tin* discussion of space geometry, to he j^ivrn later, \ve mav obtain

duals to the tetracyclical coordinates. The student to whom space

^eoinetrv is unknown mav post[ione the reading of this section.

If we interpret the ratios j- : j- : s : j- as quadriplanar point

coordinates in space of three dimensions, then

*>(,'> ~V (1)

is a sui'face of second order, and the <jfeomet rv on this surface is

dualistic with the j_;vometry in the plane obtained bv the use of

tetracvclical coordinates.

The linear e<[iiation ^^ r,-= represents the plane section of

the surface (1 ), and these sections are the duals of the circles in

the plane. The point at infinity is a point on (1 ) not necessarily

geometrically peculiar, and the straight lines in the tetraeyelical

plane are duals to the plane sections of (1 ) through this point.

More specifically let us consider the speciali/.ed coordinates of

.>? and place in space ./^
: .r, : .r

(

: .r
(

= z : .r :
//

: f, the usual homoge-

neous Cartesian coordinates. The fundamental equation is now

the equation _r
'

+ //s_^ ==0j

A\'hich. in space, represents an elliptic paraboloid. We have, then,

the following dualistic properties:

Tin- rll'uitic iHifabnlmd

The point at infinity on <>Z.

Any plane seet ion.

A n eilipt ie seet i< in made l>v a

plane n< it pai'allel to < >/. .

A parabolic section made by a

plane parallel to <>'/..

A section made bv a tangent

plane.

A section mad' 1 hv a tangent

plane nut jiai'allcl
ID < > /. .

The real point at inlinit y.
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Again, it \\e have tetracyclical coordinates for which the funda-

nu-iitnl equation is

rf 4- r.r 4- r;
- j-

4

3= 0,

\\liich ran lie obtained from tin- special orthogonal system given

in jjtit liv mnltiplving .r
( liy /, the geometry obtained thereby is

dualistir with the c

_;'e< unet rv on the surface of the sphere

./- 4- >/- + 2- = 1 .

Iii this ease the tetraeyelieal point at infinity is dualistir to the

point A", where the sphere is cut by (>Z. Circles on the tetraeyelieal

plane are dualist ie to circles on the sphere, the straight lines on

the plane corresponding to circles through the point X on the

sphere. This brings into clear light the absolute equivalence of a

straight line and circle by the use of tetracvelical coordinates. In

fact, the plane ireometrv on the tetracvclical plane is the stereo-
. / 1

graphic projection of the spherical geometrv.

To see this take the sphere whose equation is

./-+//-+r=l,

and let A" (0. <>. 1 ) be a fixed point on it and /'
( , 7;, ) any point

on it. The equation of the straight line XI' is

and this line intersects the plane ^ = in a point Q with the

coordinates t
7
,

./ = ->
//
=

i
- r i - ?

From these equations and the equation
~ + if +

"" = 1 , which

expresses the fact that /' is on the sphere, we mav compute

fc
-' -// r-'^+jll ]

,

.' f if 4-1
7/
"

/" + // + 1

~
J--+ >r 4- 1

'

p.r =j-~+ t/~~[,

p.l-
-

//.

P-'\- x~+
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Xo\v, on tht! one hand, ./ :./,: ./^
: .r

(

arc homogeneous ('artesian

coordinates of a point on the sphere, and, on t he ot her hand, t hrv are

tetracyclical coordinates of a point on the plane, heiiiLj connected

with the speeiali/.ed coordinates of f>7 hy the c(juati(ns

pj- t

=
./;
- j-'

t
,

p.r.,
= -2

./;. p.r.
= -2 j-'

3 , p.rt
-= ./'

4 + r
4',

where
j-[

: r.', :./.': ./
-

4

'

are the special courdinates.

From this relation we may read off the following dnalistie

properties :

Anv point of the plane. Any point on the sphere.

The point at iniinity. The point \.

Any eirele. A circle (anv plane section).

A straight line. A circle through \.

A special circle. A section made hy a tangent

plane.

A j)oint circle. A section made liv a tangent

])laiie not passing through .V.

The center of a point circle. The point of tan^eiicy of the

tangent jilane.

A special straight line. A tangent plane jiassini:

through A'.

The center of a special straight A point on the plane :. = 1 not

line. coincident with A'.

The special line at intinity. The section made hy the plane

,-.- = 1 (a tangent plane i.

Parallel lines. Circles tangent to each other

at .V.
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A SPECIAL SYSTEM OF COORDINATES

70. The coordinate system. Kadi of the two coordinates x and //

in a Cartesian system is ot the type described in 7 for the coordi-

nate of a point on a line. An interesting example of a more general

type of coordinates may he obtained by taking each of the coordi-

nates in the manner described in S. \Ve shall develop a little of

the geometry obtained. The results will be of importance chiefly as

showing that much of the ordinary

conventions as to points at infinity

and the ordinary classification of

curves is dependent on the choice

of the coordinate system. This fact

has already come to light in the

use of tctracyclical coordinates. The

present chapter emphasizes the fact.

To obtain our system of coordi-

nates take two axes OX and OY
( Fig. -1!>) intersecting in O at right

angles, and on each axis take besides O another point of refer-

ence, A on OX and />' on O Y. Then, if /' is any point of the plane,

to obtain the coordinates of /' draw through /' a parallel to (>Y

meeting OX in .17. and a parallel to OX meeting OY in .V. Let the

coordinates of M be defined as in
Jj
* by

/-. OM ./

A =
/.. AM
k .ON

The coordinates of

writ ten as ( ./ : ./.,, //

( 'an esian << lordinat es

and It recede to

/' mav then be taken as ( X. /u > or otherwise

// ). It is cleai' from vj
s ihat the ordinary

are a limiting ease ot these coordinates as A

v.

l; t
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The coordinates bring thus defined for real points the usual ex-

tension is made to imaginarv points as delined b\ imaginarv vahirs

of the coordinates. To consider the locus at inlinitv let /' recede

indefinitely from < >. This mav happen in three \\avs:

1. J' may move on a straight line parallel to <i.\'. Then the ratio

./ : ./, approaches the limiting ratio /, :/,-,, and the ratio
ij

: i/
:

has

the constant value determined 1>\ anv point on the straight line.

'1. 1' mav move on a straight line parallel to () \. Then ./ :
./;,

has

the constant value determined l>y a point on that line, and
//,://.,

approaches the limiting value /-.. : / .

'I. /' mav move on a straight line not parallel to U\ or <>Y.

Then .!/ and X each approaches the point at inlinitv on its respec-

tive' axis, and therefore the ratio ./ : ./, approaches / : /.-.. and the

ratio
//,://., approaches / : /'

(

.

These' are the only points which we ivcogni/e as at inlinitv. In

other words, if /' recedes indefinitely from <> it will not he con-

sidered as approaching a definite point at inlinitv unless the point

on the curve approaches as a limit a point on a straight line. \Ye

have, then, the proposition

All [mint* <i( injinttif h<n-<' t'nih'ilinutcx vlt't<-li xiitixfi/ ///>
I'l/iKition

CVi~ Va)^//!-^)^ ' (^

To deline the nature of the locus at inlinitv we note first that

an eiiiiation of the tvpe
<V\+ 'Vi = ' ^- )

if satistied hv real points, represents a straight line jiarallel \a<>.\;

and the tMiuation
",//,+ ",.'/,

-' ()
' (')

if satisfied by real points, represents a line parallel to <>Y. With

the usual extension of theorems in analytic ^eonietrv we >av thai

these equations alwavs represent lines parallel respectivelv to <>.\

and (>}'. \Ve must therefore sav that e(]iiation (1 ) represents tvso

straight lines which have the point (/
j

i

:/,\ i

, /.,:/'
(

) in coinnioii. \\'c

ha\ 'e. t hen, the proposil ion

Tin' Ini-llx iff illtillit I/ i-nttx/xfx nl tl/'n xf/'il/i/Jlf lllh'S li'li'lll'/ III i'ii//t Ill'i/t

it
IKI'III!

<-iill,'il ill,' iluiil,!,'
i><i!itf

(it intitiiti/.

The l'i trefoil i

'_;
discussion >hows that an important distinction

hctWecii lines which are parallel cither to <t.\' or to OK and lines
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which aiv not so parallel. The straight lines which are parallel to

('A' or < > } we shall call ttpeeial lines and divide them into two fam-

ilies of parallel lines. Lines which are not special we shall call

<>>>!ina r>i lines. We have already seen that a special line has a

point at inlinity which is peculiar to itself and that all ordinary

lines have the same point at inlinity: namely, the double point

at inlinitv. We may accordingly state the following theorems, the

proofs of which are obvious:

/. T'l'o Kper'nil line* <>f thf Kii/itf /a mil if 1nn-e tin point in eo/nmon.

II. Tti'o special linex uf diffi't't'iit fiuiulii'^ in' a xjieciitl line and an

ordinarii I/HI', //are <>nlt/ one point in minnion icfiie/i Hex in the finite

rei/t'on of the plane.

III. Tii'<> nonpamlb'l ordinari/ line* h>'tre alirai/x the double point

at infmitif ami <>ue "flier finite paint in n>/n>n<ni.

IV. Tiro jHiral/el <>ntin<o\i/ lines hare only tin- double point at

71. The straight line and the equilateral hyperbola. From the

pjra=ka 'AM,
I >

which define the coordinates, we may .\-

obtain

p (
/-.,./',

/-
]
./'., )

=
kj\.,

' (>A
/r,/".//

;

E
i

Similarly, OA' =

Now let 6' (I
r
ig. ">"

) be a fixed point with coordinates

('ir,:**.,, /^
1
:^.,), l*'t <'!> be the line through C i)arallel to <>Y, and

let <'/:' be the line through ('
jiarallel to <>X. Then, if the line /'.)/

meets (
'

h' in M' and the line /'A' meets <'l> in A"', we have



A SPECIAL SYSTK.M OF COORDINATES 107

Consider now a locus detined l>v the condition

CM 1

-~ const.
CUV

r

rhis locus is obviously a straight line through r, and its equation

is of the form

(
a.,./-,

a
r/-, ) ( /-

4//j
-

/r
;(
//., )

- <M ^.,//
i

-
A^//., ) ( /y

1

!

-
^-'V, )

- '

'. (
1

>

where '/ is a constant.

Conversely, any equation of the form (
1

)
in which </ is not /cm

, ., /.', #, /
or mtniitv, and -=--, , represents an ordinary straight

"i ^i &i k*

line. For
('t,: a^, fi_ t :{3 ) fixes a point f

', and the equation is
e<[iii\ a-

CM' ... . ... a., fc, (3., /r
4

lent to - - = const, it <( is zero, or intinitv, or "< or *= -,
c.\"

, /--j ft h-
A

the equation is factorable and represents two special lines, one at

least of which is at intinitv.

Again, consider the locus of /' detined by the equation

< 'M' . ( 'A"= const.

This locus is an equilateral hyperbola with two special lines as

asymptotes. We shall call it a
*/>(-/,// hyperbola. Its equation is

equation ('_!) can be factored and represents t \\ o special lines.

It is to be noticed that equation ( 1 ) is satisfied by the coordinates

ot the double point at intiiiitv and that equation ( _' > is not.

72. The bilinear equation. Kquations ( 1 > and < _' ) of ^ 71 are of

the form

which is a bilinear equation in ./' : ./',, and
_//,

:

//.,.

\\'e shall no\\ assume e(|uation ( 1 ) and examine 11 in order to see

it it is always of one of t he t\ lies ol s 71.
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In the first place it is easy to show that the necessary and suffi-

cient condition that (1 ) should factor into the form

is that . I /> /!('= 0. Furthermore, the necessary and sufficient

condition that (1) should be satisfied by the coordinates of the

double point at infinity is

We shall denote the left-hand member of this equation by A' and

make four cases according to the vanishing or nonvanishing of the

two quantities .A' and AD />('.

CASK I. AD liC'^ 0, K -^ 0. The equation cannot be factored

ami the locus does not pass through the double point at infinity.

Therefore it cannot be of the type (1), 71. It will be of the

form (_!), 71, however, if we can find a^ a
n , 3^ /3.,, and a to satisfy

the equations a 3 ak k = o I

These equations can be solved by taking

a=KC-AI>.

Hence ecjuation (1 ) represents a special hyperbola.

CASK II. AI> IK' ^ O, K = 0. The equal ion cannot be factored

and the locus passes through the double point at infinity. We shall

compare the equation with (1), $71. The locus oi the equation

under consideration intersects OX in the point (/>:/>', 0:1),

which we will take as (a^a,. /^ :/:?./) Tsing these values in
(
1 ),

^ 71, and comparing with ( 1
)
of this section, we have
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whence a = :!

' these values agreeing, since
k., k

K0. Since Al> li<
1 ^ 0, a cannot be /.ero.

Therefore the locus represents an ordinary straight line.

CASK III. A/> IK'-- <, K ^ 0. The equation is factorable

into the equations of two special lines, one of each family. Neither

line can be at infinity since the locus does not pass through the

double point at infinity.

CASK IV. AD BC(}, K 0. The equation is factorable into

the equations of two special lines, one of each family. At least one

of these lines must be at infinity since tin- locus passes through the

double point at infinity.

I f we call a singular bilinear locus one defined by the equation (
1 )

when .!/> />('= 0, and a nonsingular bilinear locus one defined

by (1 )
when .1 /> HC ^ 0, we have the following result:

A nonxini/iiltir I'itint'itr lui'iiH fx (t
itjjt'cial hyperbola <>r tin ordinary

xti'diyht lint' according ox /( //<'x nnt or i(<_>e#
y/</,x.s throui/h fin- double

pn'int
t infinity,

A xini/ulur bilinear locux consists <>f t/r special /i/icx, <///- <>f each

family, H'ht'i'e <n' <>r both <>f tin' line* >nay bi- ii lint 1 at infinity.

73. The bilinear transformation. Consider the transformation

7i<, .,;,'

(A-^^O)
ffff[= "sffl + ft-jt/Ai

(A-ySa7.,^0)
"//j^ 7-j//i+ o

2/A"

'This de lines a one-to-one re hit ion bet ween the points ( .r^.r,, //
: >/ ,}

and the points ( ./[: ./', //[: //', ). The following properties are evident :

I. An\ r

special line is transformed into a special line of the same

family and any singular bilinear locus into a singular bilinear locus.

II. The lines at infinity may remain fixed or be transformed

into any t wo special lines.

III. The point at infinity may be fixed or be transformed into

any other point either at inlinity or in the finite part of the plane.

IV. If the double point at inlinity is fixed, ordinary straight

lines are transformed into ordinary straight lines and special

hyperbolas into special hyperbolas.
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\'. It' tin 1 double point at infinity is transformed into a finite

point .1 and the finite point />' is transformed into the double point

at intinitv, anv ordinary line is transformed into a special hyperbola

through .Kand any special hyperbola through //is transformed into

an ordinary straight line. The line All is transformed into itself.

EXERCISES

1. Show thai the cross ratio of the four [mints in which a special

line meets four special lines of the other i'amilv is unaltered bv the

bilinear 1 rausfonuat ion.

"2. Study the transformation
p-''[

=
//,. p.'

1

/. - -
>/., , "//[ ./,, fr>/!, .r.

2 ,

and also the transformation obtained as the product of this and the

bilinear transformation of the text.

3. ( i iven in space the hyperboloid ./"+ //" ;."- - 1 and X and /i de lined

bv the equal ions
s -z 14- //

' ~ .-: 1
-

.//X = p.
=

1
//

./ + ,-.- 1 4- // ./ 4- ,v
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CIIAPTKIl XI

CIRCLE COORDINATES

74. Elementary circle coordinates. As the first example of a

geometric element determined by three coordinates, thus leading to

a three-dimensional geometry, we will take the circle. If we con-

sider a real proper circle with the radius / and with its center at

the point ( />, /-) in Cartesian coordinates, we might take the three

quantities (//, , /) as the coiirdinates ot the circle. It is more

general, however, to take the ('artesian equation

"j ( .-'' + >/' ) + ",'' + ".,//
+

t
=

( 1
)

as the definition nf the circle and to take the ratios
<i^\ //,: </, : /

4
as

its coordinates. The circle may then be of any of the types specified

in ^ .V.i. If it is a real proper circle the coiirdinates arc essentially

the same as ( }/, /,% /').

\Ve may also take the equation in tctracyclical coordinates ./,.

Vl + "..''',>
+ 'V:;+ UJ\

= ^ " (~ }

and take the ratios >< : u \ u.,: u HS tht; coiirdinates of the circle. If

the point coiirdinates jr
t
are the special coordinates of xj .~>7, the circle

coiirdinates
(

. obtained from ecjitation ('!) are the same as the

coiirdinates
//,

obtained from fijuation (1 ), but in general no sim-

plification is introduced bv the use of the special coiirdinates. In

fael, it is in many cases simpler to assume that the point coiirdinates

./,
in {'(illation (-) are orthogonal.

I'nless it is otherwise explicitly statc<l we shall assume in the

following that j\ ai'c orthogonal tetracvclical point coordinates

connected by t he rclat ion :
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As sho\\ ii in
jj

ti.'J the equation ot ;i special circle with the center

r<>
( y, .r )

=
i/^r^

4- //.,./., + //
;i

./

8
-f /// 4

(
'.

(/> )

\\herc, of course,
//,

satisfy the fundamental relation (/> ).

Hence, if
(

'_' ) is a special circle the coetlicients n are exactly the

coordinates of its center. liccause of the importance of this result

\ve repeat it in a t heorciii :

/. /'.'', ''/' "ft li'ii/i'tuit ti't riii'i/i'lii-ii] [mint nx'i/'ih'mifi'K <iin/ i/
t

///> r//v/V

,'ni'i'rif/initi'x biixt'il n[mil fln'//i, tJn'ii tin' circle rnfit'tlimitcx ">' <<
x/n'<-i<il

//I, '//< (lif [mint i-iiui'iltnntt'n <>f t/n
:

i-fnfi'/' of the r//v/c.

Two c'ircles \\ith the eoi'u'dinutes i\
and n^ are orthogonal when

?/(/', tc~)= >\
f<\+ ''./''.,+ 'V'' :i

+ 'V'V
" O 1 )

l-'roin this \ve inav deduce the following theorems:

II. . 1 tint'/tr fiuntion

I'onril innfi'K define* << //nr/ir <'/'/<'/>'
cinnple.r vJiifh /x i

i

<>)Hpnm><l

"f ,il! !/'/'/ '.s- ortJiot/onal t <i fxr>' clrdi' <> : <i
t

: r?. : <i .

For equation ( 7 ) is simply equation (t!) with
', replaced by tin;

constants <i. and with u\ replaced bv tlfe \ariablcs //
t

.

The complex contains special circles whose centers are the points

ot the base circle.

\\hcn the base circle is a special circle the complex is called a

xpi'i'inl complex. It consists of all circles through the center of the

base circle, and the condition for it is

","4- "..r-f-
"

:
:+ "

4

2= 0.

If '/. arc i he coi'rdi nates of the real jioint at in fin it v, o<| nation ( 7 )

defines a special complex consisting of all the straight lines of

the plane.

///. // lir., ,//'/, x !/,,>,,/ tn ,i l/'nt'iir <'<>in
j'l'i.r.

nU ,'!i'<-le nf //,,
p.'ti'-il

I, fin,;/ /.// f/ir f";, I,,/,,,,,/ tn tin'
,->,//>

If.r.

'I lie pl'oot ot this theorem is left to the student.

IV. 7'"'" HI Hllllttl Ill-nil* Iliiiil/' t'/illilt tn/ix

i / ii \- ii ii -f- <t ii 4- '' " '

'-
1 1

'

u -J
'

:: .;

' Ii

/, // 4- fi
i

n
i + I it 4 A // "I

'!> t'n, ii liiniir rniii/rn, it,-,, /////'// I-IIIIK'I xtx nt' it in //'// nt ,-//'//.*.
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To prove this, note that the congruence consists <>t all circles

which belong to the two complexes V",", and % /y/ i

= 0. These

circles are also common to all complexes of the pencil ot complexes

and is defined by anv two complexes of this pencil. Hut the pencil

(*) contains two special complexes given hv the values of A. which

satisfy the equal ion

(", + X/-, r -H ",+ XA, )- + ( n
a
+ AA, r + ( >i

(

4- X/-
4 )-
= 0. (

(

.l
)

If the liases of the two special complexes are distinct, the con-

gruence consists of all circles through two points and is therefore

a pencil of circles.

If the liases of the two special complexes coincide, equation

(U) has equal roots. \Ve mav without loss of generality assume

'V,/
;

;/
|

(j to be the special complex of the pencil. Then ^/r = '>.

and since
('.' ) has equal roots 'V/f7>

i
.= : that is, the point <i

t

is on

the circle ^. Hence the congruence consists of all circles which

pass through a fixed point on a circle and are orthogonal to that

circle. Thev accordingly form a pencil of tangent circles.

75. The quadratic circle complex. The equation

defines a quadratic circle complex.

Let >. and
"',

be anv two circles. I hen p",= >'-+ X" 1

. is an\ cir

of the pencil defined bv >. and \, and belongs to the complex ( 1 )

when X satisfies the equation

/. Tlii' Crtiltil I'lttit' I'li/lt il/f'J' I'n/it ill II X fl/'n fJtxfhli'f "/' <'l lli'l'L l/t n //( X

fl'iillt illll/ in'iii'll nt fl/'i'/i'X ll/l/i'SX ill! f/l'i'/fft nt tin'
fnili'll

In lull/I (,, tin

I'll III III I'.l'.
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Kqiiation (
>

)
will be satisfied by all values of ir

t

when
r< satis-

fies the equations
n > + ii > 4- '' '' -+- " '' = ( ',

11 i

'

rj -2 i;t 3
'

14 4

/I >' -4- <l '' + " '' + " '' = ( Ka :1 2I '

(4)
</ ' 4- <t ' + " >' 4- <r r = <),

l;i 1
'

^:i i
'

:;:t ;(
'

114 4

</ ' 4- '' ''4- '' '' 4- <t >' = ",
14 1

'

'J4 'J 114 :i
'

44 4

and any >\
Avhich satisfy these equations will also satisfy (1) and

hence he the coordinates ot a circle oi the complex. Therefore

//. Am/ '//'//' ir/tuxi" miirtliintti'x r. tmfixt'// <<<iii<tfinx (4) ///// //*

i-iri'/i' <>f' tin'
<-<>uifih\r

xit<-h tlutt <nii/ jtt'iU'il <>f r/'/-i'/fx /r/i/<-// I'untitinx
i\

an<l <l<n'x n<>f lit' cntirt'hf <>n ///*
fo/tiji/f.r trill 1ntr<' nhf >\

in cumnim!

irith (/if <'"/nph'.r.

Such a circle is called a <?<mf>/<' circle of the coni[)lcx. A double

circle does not always exist in a ^'iven complex, however, tor the

necessary and siii'ticient condition that equations (4) should have

a solution is that the determinant ot the coetticieiits should vanish.

A complex that contains a double circle is called a xit/</nl<(r complex.

If in equation) "2 ) jv is the double circle of a singular complex and

>/'. anv oilier circle, of the complex, the, equation is identically satis-

tied. Hence we have the following theorem:

III. In n K/ni/n/iir coinph'X tJtr pencil <>f circles ili'fun'il />// tin 1

(bntfifi
1

i-iri'Ii' iiml mi ii nthiT pcnt'il "f tin' coinpli'x lit'* entirely in f//f
<'ninj>li',i.

\Ve shall now proceed to find the locus of the centers of the

special circles of the quadratic complex. The special circles have

coordinates //. which satisfy simultaneously equation (1) and also

the equation lor a special circle

The circle coJ'irdinates are also (theorem I, sj 74) the point coor-

dinates of the centers of the special circles. These coordinates

define a one-dimensional extent. Therefore the locus of the centers

of the special circles of the complex is a curve, which is called a

<!/</>< or a ///-//(///(// fiiri'r (see Kx. i>, vj i^
).

Tin- coordinates
//,

which satisfy simultaneously ( 1
) and (5) will

al>o sat isfv t he eipiat h m

^ "
, '/,", + X (

//,

J

-|- H- + n: f //; )
= (0 )
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for all values of X, and anv equation ot the torm (t!) in;i\- replaee

(1) in the definition <>f the Incus sought. But among the com-

plexes defined by ('!) there are in general four singular complexes

corresponding to the values ol X defined by the e(|iiaimii

// X it <i n
11 r: 1:1 n

! ,i n - \ n
).

it a <i X <t
1:1 2:1 :;:; :;

ft it it n -- \
I 14 -4 :il 44

Hence we have the following theorem:

IV. Tin' 1'iji-lii' fa hi i/i'tii'fitt tin- I'li-nx at' tin' i'1'nfi'rx nf tin'
xjii'i'iiil

fit'i'li'K nf n ii if niii- nt /<//// niHi/ulnr I'linipli'j't'x.

Take (
', anv one of these singular complexes, and consider

the straight lines belonging
1 to the complex (

'. Their coordinates

satisfy a linear equation

(
'i"i+ 'V.J+ ',.'':;

+ ''

4
"

4
=

where c
t
are the cni'irdinates of the real point at intinitv. Conse-

quently the straight lines form a one-dimensional extent, and by
theorem I anv pencil of straight lines contains two nf the lines of

this extent. Consequently" the lines of the complex (' envelop a

con ic. wliicli we shall call 1\

Now let /> be the double circle of (', and '/' anv straight line of

<
'

: that is, anv tangent line to F. The pencil defined by f> and '/'

belongs entirely to < '. and consequently the tw< centers of the two

point circles ot this pencil are points ot the cyclic. Furthermore,

all points of the cyclic can be obtained in this way, since a point

ot the cyclic and the circle /' will determine a pencil ol circles

belonin to fund containin a line /'. Hence we mav sav :

V. A ci/i'Itc i'ii/i /" ilt'tnii'il (lit/'/ /n i/i'iirrii/ in /(//// /ni i/a )
</* flii'

/urn* nf tin- rrnfi'rx nf tin' jx'int i-it't'li'x "/ tin' i')n-ilx <>f <'/,;/<* ,1, tin, </

III/ ll //./('./ (VV'7,' 1> ttntl till' /il/li/i lit /////>' /" It flJ'l'l/ I'nllii' I'.

'1 ake
/,'

and /',, t\vo poinls on the conic I\ and \vith
/,'

and /.! as

centers const 1'iict t\\o circles < and
'

orthogonal to /'. The circles

c and '' determine a pencil ot circles orthogonal to /' and to the

chord /'/.'. Hence, by theorem \". ^ til', if A and .)' are the points

ol intersection ol < and
'

, A and ./' are the centers ol the pom!
circles of the pencil of circles defined bv I> and the chord /,'/'.
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Now let // approach /! as a limit. The points A and A' approach

.17 and M' respectively, two points on the envelope of the circles <-.

At the same time .1 and J' approach as limits the centers of the

point circles in the pencil of circles defined by /' and the tangent

to the conic \\ Hence we have the following theorem:

VI. A
/__//<

// '''// be 'fi'tn'rntt'il <t* flu'
<'nreli>]n- af a family <>f rird<s

////". < /tft'/'* art' "// it
ijii'i'ii 1'iinit' r 'tm/ it'hicJi art' nrthotjonnl f<> a t/ivcn

<-ir<'l> I >. J']a<-li rir<'li' <>f tin 1

family is iJubly ta>i</<'nt t the <'t/<-H<:

This generation of the cyclic can in general be made in four

ways, since, as we have seen, the cyclic can be obtained from the

point circles of tour singular complexes. The cyclic curves have

been exhaustively studied both witli the use of ('artesian coordi-

nates and with the use of tetracyclical coordinates, but a further

discussion of their properties would require too much space for

this book.

EXERCISES

1. <liven tlu- ('([nation 2"ifc"i"/t fy consider the polar equation
N

'i.f.r-i/,.
= 0. This assigns to any circle a definite linear complex.

I >iscuss this on the analogy of polar lines with respect to a curve

of second order in the plane, defining tangent complexes, self-polar

systems of complexes, and the reduction of the original equation to a

-tandard form.

2. Prove that if a quadratic complex contains more than one double

circle it contains at least a pencil of double circles and degenerates
into two linear complexes or a single linear complex taken double. In

the former case show that each circle of the pencil common to the two

complexes is a double circle of the quadratic complex.

3. If a quadratic complex degenerates into two linear complexes,
>how that the cyclic defined bv it degenerates into two circles.

4. Show that anv circle in a nonsingular quadratic complex belongs
to two pencils which lie entirely in the complex. Hence show that any

quadratic complex is made up of two families of pencils such that any
circle of the complex belongs to one of each of the families. Show that

two pencils of the Name families never have a circle in common and

that anv pencil of one family contains one circle of each pencil of the

' '1 her family.

5. Show that the following curves are special cases of cyclics: the

ovals of ]>c-cartes the ovals of ('asshn. the cissoid, the lemniseate,

nverse and the pedal curves of conies.
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76. Higher circle coordinates. In addition to the four <]iiantiti.-s

?/ , ?/,, v , a used in the foregoing sections, we shall no\v introduce

a tifth quantity />., defined \>\ the relation

"f + "'+ "
; ;
4- "

4
"4- >':'= () - (1;

If the point coordinates
./,

used in defining the elementary circle

coordinates ir were not orthogonal, \ve should deline
i/^ by the

equation

of which (1 )
is a special case. We may also, it we ^'ish, replace

the live quantities //,
hv live independent linear combinations of

them, hv virtue of which equation (1) would be transformed into

a more general quadratic equation, so that we may say tin- lii<jhir

(//</ t'niirdinatex in their i>ist t/eneral _///// i-iitis/xf <</' tin- r<iti<< /</

fire riirin/i/i'x connected by a fundamental ijiuadrtitii;
rt'l<tti< /i

We shall continue to use the orthogonal form for simplicity of

treatment.

As shown in ^ >',) the vanishing oi the coordinate //. is the neces-

sarv and sutVtcient condition that the circle should be special. In

this case the circle is completely determined bv the four coordi-

nates n , //.,, //.,, M
(

. So, in general, the center and the radius of a

circle are fullv determined hv means of the first four coi'irdinates,

a. ;/.,. ?/.,, it : that is, the circle is completely determined in the

elementary sense. The absolute value: of //. is then determined, but

its sign is not tixed.

It is neccssarv, then, to distinguish between two circles which are

alike in the elementary sense but differ in the sign of the coordi-

nate n.. This mav be done hv noting that anv nonspecial circle.

whether a proper circle or a st raight line, divides t he plane into t \\ o

portions, and hv considering a circle with a fixed n, as the boundan

of one of these portions and the circle with a coordinate n. of

opposite sign as the boundary of the other portion. The same result

mav be obtained bv considering the circle described in opposite

directions, with the agreement, perhaps, that the circle shall be

considered as bounding that portion of the plane which lies on the

lett hand in describing the circle.
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If ./ are the orthogonal coordinates described in detail in T>4,

that is. if we introduce Cartesian coordinates so that

p.r }

= J
:2 + >f 1 - p.':,

= -
.'-, pJ\

= -
//, P->\

=
i( '''+ ,'f + 1 ).

it is easy to compute that the radius of the circle ?/
;

is equal to

Hence to fix a sign of ?/. is equivalent to lixing the sign

", -'\
of the radius. We may agree that the sign ot the radius is to be

considered positive when the center ot the circle lies in the area

hounded bv the circle and that the sign of the radius is to be

taken as negative when the center lies in the part of the plane not

bounded bv the circle.

The angle between two circles u
t

and r is now defined without

ambiguit bv the formula

or v '' 4- ".,''.,4- ".,'',,4- 'Y'i^~ ".''.cos = 0. (2)

To change the sign of it. but not of r
r

is to change the angle

into its supplementary angle.

If the circles ", and r. are real and the coordinates are those of

sj i>4, it is not difficult to see that the angle 6 is the angle between

the two normals drawn each into the region of the plane which

each circle bounds.

If either of the two circles is special, is either infinite or in-

determinant. In particular, if r. is a special circle and ?/. is not,

we have cos 6 x when the center of r
t

does not lie on ?/., and

cos -

- when the center of >' lies on // . Hence we mav sav :

,1 six-i'iill i-ii'i'li' tiinh'iK Ulllj il>li/lt' //'/'//I if rifi'li' I'll t/'/iir/l ft* ft'ttfi'f //Vx.

Two circles are orthogonal when 6 ~ -

( '2 k 4- 1 )

'

The necessary

and sufficient condition for this is

// r -\- H > -I- ii / 4- // r (). ( '.} )ll j -j .; :; 11

Two circles arc tangent when ( >. The necessary and suiVicient

condition for this is

// r -f- " '' 4- " /' -\- / ~\- //>'--(}. I 4 )ll .' -J
'

;; :;
'

4 i
'

:, :,

It is to lie noted that two circles are not defined as tangent when

- 77. If the circles are real proper circles thev are tangent only
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when they ;uv tangent in the elementary sense and the interior of

one lies in the interior oi the other.

Consider the equation

<V'l+ "!'+ ".;";(
+ ''."4+ "-J'l

= f)
(/">)

in the higher circle coordinates. This is equivalent to equation ( '2
)

it' we place

it > . a = r , n = r , <i = i' , n r cos $,
1 1

' ^ -J :: a 4. 4 u

together with the condition

''?+ ''2+ '':! + 'Y + '5= "

These equations are just suilicient to determine r. and cos 6. Hence

t/tf /I/I//HT r/rclr
cn///i>lt'.r

i-iinNtntx nf circh'x <'iitttn</ a fu'> d <'ir>'h' under

<t fi.i-fil itni/li'.

It' <t. ----- II the higher circle eoinjilex becomes the elementary com-

plex consisting of circles orthogonal to a base circle.

The circle complex (>) is culled a special complex when

"i"' + <f
-2
+ lt

z + "4 + ".-"'
( ''-

In that ease # = and the etiuation may lie identilied with (4).

Hence it
xj>i-i-i<d i>ni[>lt'.r

in the lii'/luT cvunUnittt'S cnttsixta
';/'

circle*

tiini/> nt f<i ii ti.n'il <!>'</''.

Two simultaneous eijuatiiuis

'',",-{- ''.,^.,+ <'.."., 4- '',"_,+ <>..= 0,

/, + /, n +t, n + I, u +ljt =011' u a ' a ::
' -14' ;, ;>

define a higher circle cntii/ruence. Circles \\-hich satisfy these two

equations also satisfy any equation of the form

^( it
f + X/',. )/,-= <l

liut amoii'^ the complexes deiined liv this last cijiiiition are two

special complexes. Hence <i
///////'/ //</( cu/ii/ni, //<> r^/^.s^.s/.v (//'<///

r//V/, ,v tilili/Ct/t tu (ll'n t't.K'il <!/'/> N.

EXERCISES

1. \Vli;i! i> the confij^linitioil of lln- lii^liel' circle eoli^nieliee it' the

t\Vn >]iecl;d Ct >lll]ile\rS eniuriiie '.'

2. Show that if
,r, a i'e orthogonal tet racvelieal eoiirdiliate^, t lie circle

eoordiiiates // , //,, ?/.,, n ai'c [iroporl ional to the cosines of the angles

which the eiivle
//,

make-, \\itli the eoiii'dinati' circles.

3. I >r->c|ilir (lie col 11
j

ill X es (letillcil li\ eacll of the equations n 0.



CHAPTER XII

POINT AND PLANE COORDINATES

77. Cartesian point coordinates. Let < L\\ <>V, ()Z (Fig. ;">!
) be

three axes of coordinates, which we take for convenience as mutu-

ally ort ho'_;-onal. Then, if /' is any point in space, and /'A, /'J7,

/'.V arc the perpendiculars lo the three

planes determined by the axes, the

lengths of these perpendiculars with a

proper convention as to signs are the M<t

rectangular ('artesian coordinates of 1'.

That is, we place

Ml'. //= Ll\ z = Xl\ (1 )

Fi... 51

where .)//', /. /'. and A7' are positive if <

ineasureil in the directions O.V, () )", and

n'/, respectively, and negative it measured in the opposite directions.

The coordinates may be made homogeneous bv placing

1 t t

and taking the ratios x:i/:z:t as tlie coiinliiiatos of /'.

To anv point /' corresponds then a real set of ratios, and to any
set of real ratios in which / is not xero corresponds a real point I'.

The relation between point and coordinates is then made one to

one liv the following conventions: (1) the ratios 0:0:11:0 are

not allowable: ( "_'
) complex values of the ratios detine an imag-

inarv point; (''>> ratios in which / = but ./ : // : ,r are determinate

detine a point at inlinitv. In fact, as t approaches xero /' recedes

indefinitely trom '
>.

Il a point is ii'M at infinity we mav, it \\'e clioose, place f -= 1

in ( '2 ), thus reducing the homogeneous coordinates to the in>n-

hoino^i'iieons ones. .Warn, nonhoinogeiieous coJinlinates are easily

mad'' homogeneous liv di\idin^ liv /. Accordingly we shall u>e

l-u
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the two kinds side by side, passing from one to the oilier as

convenience dictates.

A more general system ot ('artesian coordinates may be delined

by dropping the assumption that the axes < L\\ <>
}', <>/ ( Fig. ."il

)

are mutually orthogonal, and drawing the lines MI'. LI', A7'

parallel to the axes. The coordinates are then called
<,/,/i,jn,'.

Thev

mav be made homogeneous bv the same deviec as that used in the

case of rectangular coordinates.

Throughout this book the axes will be assumed as rectangular

unless the contrary is explicitly stated.

78. Distance. Let /' and I', be two real points with the coordi-

nates
(./'j, //j, ^ ) and (./-,. //,,

,- ) respectively, and let a rectangular

parallelepiped be constructed on
/,'/.!

as a diagonal, with its edges

parallel to the coordinate axes. Then, it'
/[/,'. //>', and S/'. are three

consecutive edges of the parallelepiped, it is evident that

/;/,
= ./,,, JM = yt -ffv SK=z.2 -z, (1;

Hence the distance
/,'/._!

is given by the equation

/;/,;
= \ '(./,- .>,)-+ < //,//, r+ ( z..

- z
l r. (-2)

or, written in homogeneous coi'irdinates,

This formula has been proved lor real points onlv. It is now

taken as the definition of the distance between all points of what-

ever nature. From the definition we obtain at once the following

propositions :

7. Tlif ilittfiitti'i' ln'tn-ttii tn-n
ji'ii/tfx HI if/i, r >(' ///,/',/, is ,/f iiitlniti/ is

Jin it.'.

II. Tin tTtxtitin-f I,,tir,, n it /mint lit intiiiiti/ ,i/i,l ,/
jL.'int

imt ,it intiiiiti/

ix intinitf. Unli'xx tin-
//"////

lit infiniti/ h,is ,-, ,,'i/', I iinit , x ir!i!<-li mi/fxt',/

_,-'

J
4- //'

J

-f- .;(), / O. ( I )

In tin' I'ltttT nix,' tin' ilixtiiiii-, /:,//'-,,, i tin-
/,

..'in! i/f intlnit/l ,Hi'l 'in >l

I,,
ilnt nut lit ///ti/i/tt/ <x i inl t , r in i n<tt < .

The points whose coordinates sati>lv e([uations (
\ ) lorm a one-

diineiisional extent called ///. .///- ,// ini'miti/. The reason for the

use ot the word
'

circle
'

will appear later.
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If in equation {'2) we replace the coordinates of
/,' by those of a

fixed point ('
(

./ , //
. ,: and the coordinates of /' bv those of a

variable point /'(_./, //,
^ ), while keeping ('/' equal to a constant /,

we obtain /
r r

,-j , ,,._,. \-\(~ _ -. -\-_-_
t
:* /

.-,

\

which defines the locus of a point at a constant distance from a

fixed point. This locus is by definition <i
*y///c/v.

Kquation (
f>

) mav be written in the form

A ( ./-+ <f + r ) + !>>( + <
'i/t + iw + i-:t- = o, (

;
)

where

If the center (' and the I'adius r are Unite, the coeflicient A is not

y.ero. Conversely, any equation of the form (!) in which A. is not

y.ero defines a sphere, the radius and the center of which are given

by (7). More generally it is possible to define a sphere as the

locus of any equation of the form (li). In ease .1=0 the center is

at infinity, the radius is infinite or indeterminate, and the equa-

tion splits into the two equations t = and />./ + ('//+ Dz + /,7 = 0.

These cases of the sphere will be discussed in detail in ^ 11 S. In the

present section we shall consider only the case in which A "-- and

the sphere conforms more nearly to the elementary definition, and

its equation mav then be put in the form (">).

The I'adius, however, mav be real, imaginary, or y.ero. If the

i-adius is y.ero, the equation takes the form

and the sphere is called a intU
.sy>//<'/v

or a /mint vj>/iff<:

It is obvious that if (./'
(i

.
//n , .r

) is a real point, equation (
*

)
is

>ati>lied by the coordinates of no other real point. There exist,

however, a doiibK infinite set of imaginary points which satisfy

equation ( s').

79. The straight line. A straight line is by definition the one-

dimensional extent of points whose coordinates satisfy equations

p.,
:

r, -f \./-
a
,

W ,'/,+
X//-

(1)
pz ?,

+ X-^,

P f
', + ^'.,1
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where
('',

:

//!
:

^'[
:

',
) an( l

(''., '//.,
:

-.,
: t

., ) u -

e tl"' coordinates of t\vo

fixed points and X is a variable parameter.

From the definition we may draw the following conclusions:

I. AIII/ f ii'n d/xtinrf jinintx <l> fi'fnn'iif <l xtrdii/ht lull', nin/ mi// tiro

t/txtitn-t finintx mi tin' ///it- ni<i]/
in' HKi'il t<> determine if.

The first part of this theorem is obvious. To prove the second

part let
/,'

be a point on the line ( 1
) determined bv X X and let

/.! be uuotlier point on the line determined bv X = X,. Let a be

a quantity defined bv the relation -
-

X. Then the first
: . . l + o-

e(}iiation in (1 ) mav be written

__ j\ 4- X,./-., 4- a ( ./-, -f X.,.r, )

^1T7~
or r.r =

./; 4- X,.r.,-(-
a

(.i\ 4- X.,.r, ),

and similar equations can be found for
//, z, and /. lint these are

the equations of a straight line defined by /,'
and /;, \\hieh is

thus shown to be identical to that defined by (.i\: //^ z^.
(^ and

(rs
:

fy.,:^a:Q.
II. A xtriiti/lit lini' cnntalnx a

*//////( }>t>/'nt
<tt infiniti/ unlcxx it H<x

<'tit!r<'l>i id ititinitif.

If, in equations (1 ), t and
/*,
=

(I, then f = for all values of X.

Otherwise / = <) onlv when X ---
' which determines on the line

t.,

the single point at iniinitv ^^., -t'J'.>fi_ 1 yt:zt., zJ:^. This

proves the theorem. Straight lines which lie at iniinitv are some-

times called improper strtwjld liiu'*: other lines are called y/-<y" /

xt/'iii<iltt lines.

III. If tll'n paint* lit' <i xtrnii//it //in- tire rail, tin
1 line i-nntninx <!//

in fin if]/ f )<'<>/ i>ii/nfx.

This follows from the fact that if the t \\ o real points arc used to

determine the equations ( 1 ), anv real \alue of X irives ;i ]-f;d point

on the line. Such lines arc called //<// ////.'.v. although it should not

le forgotten that tln'V contain an iutiuitv ot imaginary points also.

It a real line is also a proper line we mav put /,. /,, and f equal

to unitv in equations ( 1
) and \\rite the equations of the line in

the form
/;

('2)
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From this and equations ( 1 ), 7S, it is not difficult to show

tliat tin 1 real points of a ival proper line form a straight line in the

elementary sense.

IV. An iniiii/lminf tmi>iht line may eontnin <>ne real point <>r no

/< ill i"ii
n(.

To prove this it is only neeessary to give an example of eaeh

kind. The line defined hy the t\vo points (1 :1 :1:1) and (1:0: /:!)

contains the tirst point and no other real point, while the line

defined hy (!:/:/:!) and (
1 :<):/:!) contains no real point.

These statements may he verified hy using the given points in

(([nations (1 ) and examining the values of X necessary to give a

real point on the line.

An imaginary line which contains no real point may he called

completely imitifinary, one with a single real point incompletely

iiiHiifiniin/.

V. If f/ie ilififtim-e hcticeen tiro i>intx mi a straight line /.s zero, (Jte

Jifittinee between any other ttr<> points <>f the line ix zero.

To prove this we may use the coordinates of the points between

which the distance is x.ero for the fixed points in equation (1).

Then, if 1^ and I', are two points determined by A. = X and X = X,

respectively, we may compute the distance ![!',' by formula (o),

j ~S. There results

A straight line with the above property is called a 'minimum line.

Such lines have already been met in the plane geometry. Concern-

ing the minimum lines in space we have the following theorems:

VI. .1 minimum line meet* tJie plum' at infinity in the r//vA- /if

infinity, <in<l, i-n/irerw/y, <iny line /i"f /if infinity tchich internectn the

<//</>' </t infinity is <t minimum hue.

l-'rom the proof of theorem II the necessary and sufficient con-

dition that a line meet the circle at infinity is

which is also the necessary and sufficient condition that the two

points (j'-.i/^z^t") and
(''.,://.,:,?.,: O should be at a /.cro distance

apart. l>y theorem V the line is then a minimum line.
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VII. Throut/h <tn/j jim/it J sjxd-c </<>< n <"// <>1 iniminiini ///ex

u'lui'h is <tl* <t fun/if xji/n'i'f.

Any point in space niav lie joined to the points of tin- circle at

inlinitv. We ha\e then a onc-dinicnsional extent of lines through
a common point, and such lines form a com- by definition. Also

if (./://: ,r :/) is the fixed point and (./://: z :

f)
is any point on a

minimum line through it, the coordinates of (./://: .: : f) will satisfy

the conation
(yY o

-
-r/T-f (i/t

{i -///)- + (~.t_- z
at)

=
i (

:;
)

and, eon\ t'isely, any point whose coordinates satisfy this equation

lies by theorem VI on a minimum line through (.r(|

:
_//

: ,r : t
t

).

E(juation (
:

) is, howeyer, the eijuation of a point sphere in

homogeneous form. Hence the minimum cone is identical with

the point sphere.

80. The plane. A plane is defined as the two-dimensional extent

of points whose coordinates satisfy an equation of the form

Ax + Jty + Cz + JH = Q. (1)

From the, definition we deduce the following propositions:

7. If ttt'o pointx //'' <>n it
i>l<tii<',

t/n' gt)'(t it/lit l/'/n' funnt'ctht'/ t/t*//i //.<<

fntii't'ttj "/i tin' htitt 1

.

(./._, ://.,: ,;:/.,) satisfy (1), then (
./^
+ X./-..: i/

{

+ X//..: .~
{
-f Xr,: ^ + \t

,
)

does also.

//. .1 ]>l<tm' is uni</Hi'fi/
ilt't>rntiii<<l l>i( nnii f />/<>' jmintu n<>t "/i tin-

x<i/in'
xti'itiijlit lint'.

If
(
.r

{

:

i/^. .-^ /^, (,',://,:,-,,:/.,), and (./;,://.,::.:/.) are any tliree

points, the coefficients .1. /.', <\ and /> ma\' he >o determined that

A.r^/lf/^ C-
{
+

.Itt^---.
0,

J./
1

.,+ /'//,+ C2..+ />'._,=
()

- (.- )

.(./. + /;//..+ rr.+ /;/
a
= 0,

unless there exist relations of the form

\J\+ \,i\, + \->'A
= ( l

X / + X.,/.,+ X// ..--.),
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It follows from throivms I and II that any plane in the elemen-

tary sense niav In- represented by an (Mpiation in the form ( 1 ).

The general definition of a plane extends the concept of the plane

in the usual way.

///. /'"int.* (it intiniti/ lif in a plane eaUi'il the jilane (it infinity.

This is a result of the definition, since the equation of points at

infinity is t - <>.

On the plane ./ the coordinates //
: z : t are homogeneous

coordinates of the type of sj 1 <s . Similarly, on the plane //
= we

ha\e the Cartesian coordinates j-:z:t and on the plane z = the

('artesian eoiirdinates .r://:t. ( )n the plane / = <> we may deline

t:y\z as trilinear coordinates of the type in ^ 'I'l.

IV. If tJiree pnlntx iif a plane (ire real, tin 1

plant' cvntainx a doubly

in finite number <>f real j>t/i(x.

From equations ('2) the yalues of J, />', <\ and I) are real if the

coordinates of the points involved are real. Then in equations (\ )

real yalues may be assumed for two of the ratios ./://: z : t, and the

tliinl is determined as real.

Such a plane is called a r>'<il j>l<ine, although it contains, of course,

an infinity of imaginary points.

V. An// t/rn Jlxtini't
}>liitn'x intersect in <i trai<jJit //'/n\ ami any

>tt rail/It liiu- null/ In- Ji'fini'il ax the internedion <>f ttr<>
i>l<tn<'x.

('onsider the t\\'o planes

Thoe (Mjiiatioiis are satisfied by an infinite number of values of

the coordinates. Let ( ./'

{

:

y^. z^: t^)
and

(./-..://.,: ^,: /,) be two such

values. Tlit.-n the yalues (s i +\f:y^-}-\yn :z
i
+\2. i :t-\-\t^ also

satisfy the two e(juations so that the two planes haye certainly a

line in common. '1 hey cannot haye in common any point not on

this line it the two planes are distinct, since three points completely
determine a plane ( t heorem 1 1 ).

A'_;',iin. a plane ( by theorem II) may be passed i hroU'_di two points

on a ur i vi 'n line ami a third point not on the line, and two such

planes will determine the line.



POINT AND PLANK COORDINATES 1ST

VI. Any plane e.n-<'j>f
f/i>'

filitm
1

<i( infinity ''nit<iin* <i xini/li' />/ <it

infinity i
nn<l <tny tti'<> pinnot tnfcrx>'''t/><</ in the xann' Inn 1 nt infinity

a re
j><ir<il!t

/.

The first part of this theorem is a corollary of theorem V. The

second part is a definitioii ot parallel planes. 'I he definition agrees

\vitli the elementary detinit ion since, by tlieorem \', parallel planes

in this sense have no finite point in common.

VII. An i/ii<i<iiuri/ }>/<ii' C'lntninx "/>< <nnt nly <>n>' r>
i

<tl xtruii/Jit //>/<.

Since an imaginary plane has one or more of the coefficients in

its ('([nation complex, \ve may write the equations as

(
n

i
+ in,, )./ 4 ( tf

l
+ ftf., )// -f ( 7, + iy.,)z + (, 4 /. , )t

-.

-

0.

This can he satislied hy real values (./://: ^ :/) \\hen and only

when

+ 7a* + o./
= 0;

that is, when (./://:.?:/) lie on a real straight line (theorem V ).

That the line is real follows from theorem III, 71', since the above

equations are evidently satisfied bv two real points.

The real line on an imaginary plane may lie at infinity. In

that case the plane is said to be imnijinnry <>f li><iJn>r "/'/</. If the

real line is not at infinity, the plane is said to be umti/inary "f

VIII. An if jiJiiiu'
nitt'rxt'i-tx n xphcrp in <t <'/>//>.

Consider the intersection of the plane

and the sphere
n( .r 4 .//' 4 r ) 4 /'./' 4 '// 4 /.: 4 ''/ = 0. (

1

Any point on the intersection of these two surfaces also lies on

the intersect ion of
(

:\
) and

//( .r + ,//'4 z-) 4 (
/ 4 X. / )s 4 (

' 4 X
/>')// 4 (

/ 4 V ')
-

\\here X is any multiplier. Filiation (
.

> j-ejiresents a sphere with

the center
[(/- 4 X.I): (--4 X /.'):(/ 4 Xr > :

-
-J ,/

j.

which \\ill lie in the plane ( -\
) \\lien

A.l4'7;4,/r i^ ,//> f ( .1-4 /;
: 4 <

"-

>\ .. n.
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The points of the intersection of ('>) and (4) arc tliereforc

shown to lie at a constant distance from a fixed point of the

plane, and hence the intersection satisfies the usual definition of

the circle.

The above discussion fails if the coefficients of the plane satisfy

the condition
/-_)_ /;-_j_ c- ()_

This happens for the plane at infinity and for other planes called

minium ni filnni'x.
In these two eases the truth of theorem VIII is

maintained l>y taking it as the definition of a circle. This justifies

the expression "circle at infinity," which we have already used,

and shows that there is no other circle at infinity. The ease of a

minimum plane needs further discussion.

IX. An// jititnt'
nt <( minimum

j>/<t>if
intersect,* tin- >/'//!< at infinity

in tiro
jiointx, U'h'u'li arc tin 1

<-ir<-lt> f>ointx <>f that j>fnnt\ A minimum

j>l,nn'
ift tiini/i'nf (<> tin- i-i/'flt' lit infinity. Through <t//y j>oitit

in a pliine

U'JiirJi As HO( n i/itninin/n /i/iinr </ tiro until in n in ?i)H'R. TllTOWjli <tny

point in (t minimum pl<im' i/ot-x o/i/y one innnnnini lint'.

The plane (
:>

) intersects the plane at infinity in the line

.(./ -f- !>>i + ('2 = 0, / = 0, and this line intersects the circle at infinity

in two points unless .l~+ f!~-\- ('"= 0, when it is tangent to that circle.

In the latter case the plane is liv definition a minimum plane.

It is easy to see that in a plane which is not a minimum plane
its intersections with the circle at infinity have all the properties of

the circle points discussed in ^0 and that the metrical geometry
on such a plane is that of 45 and 4<>. The latter parts of the

theorem follow from theorem VI, ^ "IK

The minimum planes are fundamentally different from other

planes in that a minimum plane contains only one circle point at

infinity. The geometry on a minimum plane prociits, therefore,

many peculiarities, some of which will he mentioned in the next

sect ion.

81. Direction and angle. We define the <lirt'i-ti<ni of a straight

line as the coordinates of the point in which it meets the; plane at

intiiiiiy.
This definition is justified hv the facts that the lines

through a point arc distinguished one from another hv their direction

in accordance with theorem I. vf 7!', and that a line can ! drawn

through the point with any ^iven direction hv the same theorem.



POINT AM) PLANK COORDINATES IS'l

We shall denote the direction of ;i line by the ratios /:///://.

Then \ve have, by theorem II, ^ 70,

1: m:n =
./-./, .//

:

//,/j ///
: ^/, 2/ ,

where (./ :
//

:z : f
) and (.r ,://: 2,: /.,) are the coordinates of anv

two points of the line. If neither of these points is at infinity, \ve

ma
>"

writc /:,,:, =,,^, i :,v^ //i
:,

2
-,r

which is in accordance with the more elementary definition of

direction.

From the definition we have the following
1

consequences:

/. TH'D noneoin<'idcnt /hit'* with tin' x/i/m' diret'tiun <ir' jmrnlh'l.

Such lines lie in the plane determined by their common point at

infinity and two distinct points one on each line ( theorem II, *"
),

and they can intersect at no point except the common point at

infinity. Hence they are parallel.

II. Tlit 1

n>'ft'xx<tnj <nnl xi/Jfifii-nf condition that n line ohould I"' <>

minimum line ix that if* direction xhould isntwfy tin' condition

f-+ t>r+ tr= 0.

This follows from (
X ), 5; 70.

In ij 4*1 we haye defined the angle between two intersecting lines

/ and /, by t he e<piat ion

where >

t

and /, are the two minimum lines through the inter-

section of 7
]

and /, and in their plane. We shall continue to use

this definition.

Now. if the lines /,. / . HI and /;/
,
intersect the plane at infinity in

the points A , /,,, .17 and .17, respect ivelv, we have, by theorem I. vj 1 ti.

From this we haye the following theorem, in which the condition

that
/!

and /, should be intersecting lines may be dropped:

III. Till' 'lU'lli' ln'tll't'1'll t'l'" lini'X ix
,</>/<!/

fu f//,'
}l)''iji'ff!l'i'

d/'xfllHi'i'

ln'tn'i'i'n tin'
i>i>uitx

in //'///'// tin i/ n/ti'/'xi t tin' ii/iiii,' <it iiit:nilii. tin-

i-if-fi' 'if intiittt// /" lii'i tnl:, a ,fx tli, fu ii,lii in< ntiil --.////< //<// tit,- C"t/xt'ttif /\
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The cross ratio ( I.J..,,
-l/r '/,) is unity when and only when

.1^

and .V, coincide or /. and A .coincide, it being assumed that neither

/. nor /., lies on the circle at intinity. In the former case the lines

/ and /, are parallel : in the latter case they lie in the same minimum

plane. Hence follows the theorem:

IV. It' t n'n nmi minimn ni Inn'x ure mtrnUi'l <>/ if they Jn' in the sm/ie

minimum i>/<ini-, t/n'// innke <t ,r<r" tin>//>' tcitli each other, nn<l, cnn-

I't'rxt'fi/, if hi':' ni'itininimnm ////<* nui/ce <t zi'/'o mii/li- tt'/f/i each other,

t/ii'i/ '!>'' i/'t/n'r [niriillil
m' III' in tin' xiime minimum

ji/tiin.

Let us suppose that / and /.are nonminimum and distinct and

that their directions are A : I!^ (\i\m\ .(.,: />'.,:
<

'., respectively. Then,

as in (J ), $ 41\

From this we obtain the following result :

V. Til'" nnnminimnm Hn<'x <tr<' perpendicular /<> <'<(/'/i other

their dire<'tins itiitiaif tin' <-"inliti<'n

Interpreted on the plane at infinity this means that the two

points (-!.: /',:
<

\
) iind ( ./.,: //,: <

', ) lie each on the polar of the other.

VI. If .l./'4- /'// 4- ( '? + I >t ----.() is n<'t n minimum pl<i>n', mil/ line

irith tin 1

il n'i''-t i'in .1: /.' : (' <l,x ii"t Hi' in tin' ji/inie nml ix
pi'l'i'i'il-

<li<-iil<tr t" i'1'i'i'il 1 1 in- in tin' iiliim.

The plane mentioned meets the plane at infinity in the line

A.r 4- /'// 4- ( '-~ --=
. :uid any line with the direction . I : /.' : (

'

meets

t he plane at in tin it y in the point ( . I : /.' : (' ), which is t he pole of t he

line .(./ 4- /.'// 4- ( '-;
- with respect to the circle at intinity. Hence

the point ( .1 : /': <'
) will not lie in the line . /./ 4- l>;i + <": -

-
<> unless t he

latter is tangent to the circle at infinity. This jn-oves the theorem.

Any line with the direction .1: /.' : (' is said to be u<>rnnil to the

plane . /./ 4- />'//4-
'

'.? 4- I >t --- ". and tliis <lesignation is used smnet imes

even tor minimum planes. The above discussion, however, estab-

lishes t he foHmvinLT t heorem :
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By ( 1 ) a line with the direction / : m : n makes with the axes o

coordinates the angles n. /:?, 7, \\ here

,
in

cos/:}" ' cos 7 =
\ l~+ iii--\- it'

2
\

These (|iiant it ies are called the tlirt'<'tin i'nxiiH'1* <>t the line.

\Vilh their use equations (jl)
of ^ 7'.' may he put in the form

where it is easy, to show that r is the distance of the yariahle point

( ./, //, .?) from the fixed point (.r^ //r ^
1

). It is oh\ ions that these

equations, do not hold for a minimum line.

EXERCISES

1. Show that through any imaginary point in space there imes a

]M.Mieil of real planes having a real line as axis.

2. Show that the equation of any imaginary plane of lower order

may he written n.r -f- /'// + ''.'-' + </f '*. where n, />. and < ai'e real and '/

is complex.

3. Show that any imainnary straight line either lies in one real

plane and contains one real point, or lies in no real plane and contains

no real point. The last kind of lines is called rump!, /</// i ut'/ifi n<tr//

and the former kind !nfi>iii^/t'ff/t/ imm/inn n/.

4. Show that, the necessary and sntlicient condition that two points

should determine an incompletely imaginary straight line is that the

two points lie in the same plane with their conjugate imaginary points,

hut not on the same st raight line.

5. Show that two conjugate imaginary points determine a real

straight line and that it an imaginary point lies on a real straight lim-

its conjugate imaginary point does a No.

6. Show that a minimum line makes an infinite angle with any

other line not in the same minimum plane with it and make-, an inde-

terminate angle with any line in the same minimum plane \\ith it.

7. If ( '_' i is taken as the definition of perpendicular lines, show that

a minimum line is perpendicular to itsell and that a line in a minimum

plane is perpendicular to cyer\ minimum line in the plane.
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8. If tin- angle between two ]ilancs is llit' angle between their

normals, show that two iioimiinimuni planes make a xero angle when
thrv ar>' parallel or intersect in a minimum line.

9. Show that anv minimniii plane makes an infinite angle with any

plane not intersecting it in a minimum line and makes an indeterminate

angle with any plane intersecting it in a minimum line.

10. Show that the coordinates of a point, on the circle at infinity

can lie written ./ :

//
: :. 1 .s-'

J
: /( 1 -f- N'

J
) : '1 N, where ,s is an arbitrary

parameter. Hence show that the equations of a minimum line may be

written
./ =

./-j
-f ( 1 .s-

) /-,

//
=

//!+''(! -f- *-) /,

z = z
l
+ '2r,

where x is fixed for the line and / is variable.

11. Show that the equations

where F('N') is an arbitrary function, represent a minimum curve; that

is, a curve such that the length between any two points is zero and

the tangent line at anv point is a minimum line.

12. Show that a minimum plane through the center of a sphere
intersects the latter in two minimum lines intersecting at infinity.

13. If a line is defined bv the two equations

V+ '\H+ ( 'r+ 'Y = >

-I.,'- + /'.,// 4- <".,,'- + 1>J <>.

show that its direction is /,y ., ]],f\
:

<\.
I

.,
r

.,.
I

,

: . 1

,/.'.,
.-1 J^.

14. Sliow by reference to the ]ilane at infinity that the necessary
and -iiflicient condition that the plane .!./ 4- /;// -f- ('r. -f- I >f = should

be parallel to a line with direct ion / : ni : n is .!/-(- /-'/// 4- '

' = 0.

15. Show t hat the equal ion of a plane t h rough the point (,/ : // : :: : f
)

and parallel to the two lines with the directions / : //> ; n and /,: ///,: //.,,

respect ivelv, is
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82. Quadriplanar point coordinates. Let us assume four planes of

reference AI'><\ AT>I>, AI><\ and lU'D ( Fig. ~>- ), not intersecting in

a point, and four arbitrary constants /
, /,-,, /,, h^.

Let
j> ,

y-,. y .
y/

be the lengths of the perpendiculars from anv point /' to the four

planes in the order named, the sign of each perpendicular being

positive or negative according as /' lies on one or the other (arbi-

trarily chosen') side of the corresponding plane. Then the ratios

.> : f : .r : .r = /,- /< : / /> : k /> : /,' /
l -j :; 4 l/i .' j ,;I .', 4/4

are the coordinates of the point /'.

It is evident that if /" is given as a real point its coi'irdinates are

uniquely determined. Conversely, let a set of real ratios ./ : ./ : j : ./

be given, no one of which is /.ero. The

rat io ./ ./'

4
is one of the coi'irdinates of

any point in a definite plane through

IS<\ and the ratio -/;,:.? is one of the

coordinates of any point on a definite

plane through /!/>. The two ratios are

part of the coordinates of anv point on a

definite line through /.' and of no point

not on this line. Call this line /. The

ratio ,/,:./ is one ot the coordinates ot

anv point on a definite plane through
1 '[>. ('all this plane in. If the plane m and the line / meet in a

point /', the ratios ./ :./_,:./.: r have fixed a definite point. If the

line / and the plane /// do not intersect, we shall say that the ratio>

define a point at infinity.

Complex values of the ratios define imaginary point--, and the

ratios 0:0: : are excluded.

It one ot the coordinates is /.ero, the other three are trilincar

coi'irdinates on one ot the planes of reference. For example, it ./.

the ratios j-
1

: j\ : ./ arc tri linear coordinates in the plane . I /'-< . since

the distance of a point in the plane .\l>< from the line .(' is equal

to its distance from the plane A<'1> multiplied by the cosecant of

the angle bet ween the planes . J />'<" and .!/.'/>. and. similarly, for t he

distances from A /' and /.'' '.

1 1 ence all values of t he rat i os ./.:./:./ : ./ . except t he unallow-

able, ratios 0:0:0; ". determine a unique point.



104 T1IKKK DIMENSIONAL GKOMKTRY

Referring to the figure, we note that
-''j=

" <>n the plane .(/>'";

./..
(I on the plane .!/'/>:

./'.,=
on the plane A/H'i and j^=

on the plane />/!< '.

The point .1 has the eni'inlinates 0:0;0:1, the point It the

coordinates :
<>

: 1 : <>, the point <
'

the coordinates 0:1:0: 0, the

point f> the coordinates 1:0:0:0. The ratios k^:k.,:k.^k^ are

determined by the position of the point /, for which the coordinates

arc 1:1:1:1, and this point can be taken at pleasure.

Qnadriplanar coordinates include ('artesian coordinates as a spe-

cial or limiting case in which the plane ./ = is taken as the plane

at infinity. For if the plane !'><'!> recedes indefinitely from A, and

the point /' is not in !'><'!>, the perpendicular /> t
becomes infinite in

length, but /,"

4
can be made to approach zero at the same time and

in such a manner that lim /.*

4 /' 4

= 1. Finally, if the planes AI>(\

.!///>, and A<'I> are mutually orthogonal and /"
t

= 7r.,= /r.
t

= 1, the

coi'irdinates are rectangular Cartesian coordinates.

If the planes J//<". A/!/>. and A<'I> are not mutually orthogonal,

we mav place fc
} csc'^, where n is the angle between A /! and the

plane A<'I>, and take similar values for
/.-..

and /-... We then have

oblicpie Cartesian coi'irdinates.

In nsin<4 cniadriplanar coi'trdinates it is not convenient or neces-

sary to specify the coi'irdinates of a point at infinity. In fact, such

points are not to be considered as essentially different from other

points. Distance and all metrical properties of figures are not

conveniently expressed in terms of qnadriplanar coordinates and

should be handled by Cartesian coi'irdinates. \Ve may. however,

pass from the general qnadriplanar coi'irdinates to ('artesian coi'irdi-

nates by simply interpreting one of the coordinate planes as the

plane at infinity.

83. Straight line and plane. We shall prove the foliowing theorems :

I. If //
:

//
: i/ ,

:
//

<nnl z : z /. z : z '//<- /'/ ti.ri'J jxihitx, ///> ,;,,','/<//-

itittfit <>f nnif pn'uit <>)i fin xfr<ii'/ht //// j'oinitn/ tln'in ///v
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This is the definition of a straight line for imaginary points. If.

however, the points // (
and ;

t
are real, the points given 1>\ real

values ot A. are real points which lie on a real straight line in the

elcinentarv sense. This is casilv verified hv the student in using

a construction and argument similar to that used in ^ '23 for the

straight line in the plane.

This is the definition of a plane. If
//,

and .~:

t

arc anv two points

satisfving the equation of a plane, the coi')rdinates of anv point on

the line joining //-
and

,?,
also satisfv the equation : that is, the line

which joins anv two points of a plane lies entirelv in the plane.

Hence, if the plane contains real points it coincides with a plane

in the clciiiciitarv sense.

///. Three points n<>t in the x<n>t<' strdujht l/iif dcfcfi/nnf

mil if
one plant'.

The proof is as in ,S(). If
(
//

(
, z

t

. t
i
are the three points, th

equation of the plane is

( t t t
i -j .; i

IV. //' i/
t

, Zr ilinl f
i

lire Ktl// three jmhittf >u>t n tin' xitnie xt)'itii/ht

///H', the <-<i(i/\(iti(<t('X <>f 'Hi l/ [>o'tnt
oil the j>l<tne t/l/'uU<//i t In lit imllj ne

written

p.r -
-

ii + X.r + ut .r
\

,'
i

'

i

'

~
i

p.i ,

-

// -\- X^.,+ P-t ,
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V. Ami ('/'a tlixtinct iilttiii'x i itte/'xcrt in a gtml</ht line.

The proof is the same as that of theorem Y, SO. A line can

therefore lie dctined l>v two simultaneous equations of the form

ITT 7 A- X^ 7 'V ^
7

VI. 11 /,*',<'
' (tll(

' 7 '';

^A

is. t'"/' ((n if fit! ni' at' X. tftc <'<fittn>n iif (t phine thrmi</li the line of ui-

t, rn< i-timi "f tin' ///>/ tiC'i
/il<(nt'N.

Ax \ td/ct'N it// t'd/uex, all j>ldncx of

tin' [n in'il null/ l'i' "lit <ti /tt'tl.

VII. .I//// f/t/'i'i'
i>l<tni'x

nut bi'lmii/ini/ In (//< Mi/tie pencil tnfi'/'xt't't in

To prove this consider the tliree ('((nations

V 1 +V,+ V; ! +V,-<>'

<\-'\+'Y,+ 'Y,+ 'Y^ (} -

These have the unique solution

2 a 4

./:./:,:,=: I, I,. I,
'\ '4 'l '-j

'

'i

'

';i

4 1 4 i -j I 2 a
i

unless the determinants involved are all y.ero. I>ut in the latter

case there must exist multipliers X, p., p such that

and hence the tliree planes belong to the same pencil l>v theorem \ I.

/,/,1111'S
lint ll'tlinijilKj I" till' Xllllll'

pl'llt'il,
t/lt'/l

/.v tin
fifintfi'i/i "f a

[ilitin"
tli fniii/li flu'ir /mint if tut, /-.< 7/"//.

<///-/ /^ /-//,( (/// rnhirx. 'ill
filitnrx ////''///'/// '? i-"iitiH"it jinint

i-ii n !>< J

>'//// lillllti'X f'n/'/tl <l /'/'//'//'.

The pi'i K if is i il ivi< His.

. lx X
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84. Plane coordinates. Tin- ratios of the coefficients in the equa-

tion of the plane art- sufficient to fix the plane and inav lie taken

as the rtit'irili/Hifi'x <>f
fin-

j>l<rti>'.
\\ e shall denote them 1>\ i/

t

and sav

that it :
/'.,: n.^:

i<
4
are the plane coordinates of the plane whose point

equation is

Vi+ 'Vs+ ?V'a+W ' (^ )

No dit't'ereiiee is made in this delinitioii if the point coordinates

are Cartesian. Equation ( 1
)

is the condition that the plane u
i

and

the point x
i
should lie in tniitnl

//.v/V /--//; that is. that the plane

should pass through the point or that the point should lie on tin-

plane.

\Ve have the following theorems, whieh are readily proved lv

means ot tin >se ol vj So :

pi/ r -(- \/t' .

^/i'7 (///v i>lnn>' iritli tJicxi' I'oflrilinutex
fKtxsi'x tJtt'nui/Ji iJnx linf.

The proot is obvious. Equations (~2) ai'e the equations of a

peneil of planes. They are also called the
j>l<in<

:

<V/;M////X <>f <i

^trail/lit line, the axis of the pencil. In this method of speaking

the straight line is thought of as earrving the planes of the

pencil in the same sense as that in, which liv the use of equa-

tions (1), So, the straight line is thought of as carrying the

oints of a rane.

/x xittixtli'tl l>i( tin' funfilinntfn "f all
floiii-K

tln-'>ii,ih ,/ //'./,,/
///.////.

It follows from (1 ) that all planes \\hose eoi\r<liuales satisfy ('')

are united \\' it 1 1 the point it : it /. *i : <i . ICijUat ion (

'

) i^- t h<'i'etore

called the plane equation of the point it : //,: <r.,: <t , in the same

sense in which equation ( - ). ^
s:

'>. i> the point equation of tin-

plane <t : (i : it. : << .
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III. Thi-t-e planes ii'it helon'iiii'i t" the same pencil determine <i point.

'I'his is. nf course, the sanu 1 theorem as \"II, ^ S>5, hut in plane

coordinates we prove it l>y noticing that tlnve values of
?/,., say r,

ir
t

, *,,
which satisfy (^"> )

arc sul'ticient to tletennine the eoeflieients

of (''>) unless ps i

-=\r
i

+ ^/r ;
. The equation of the point determined

1>\ the three planes is. then.

4 -0. (4)
// ^* // //'

IV. If ?',., ?/',.,
and n

i

lift- an i/ three planes )i/>t l>eln</ln<j to tin- same

pi'itt-i/,
the coordinates <>f <itt>/ p/iitte fhrvw/h their cu//t//i"/i paint ttre

pu t

~
i\

. -f- \//v -(- ^.sv,

*///'/ (///// j>f(ine
U'tth tJtexe coordinates p< taxes tJirow/Ji t/iix jmint.

The proof is olivious. These jilanes form a f>n/t<l/e.

V. Tiro linettr equations ic/tifh are distinct << re satisfied, lij the enurdi-

nafes if j>l<ines u'JiicJi //ass tlirouyli a atnwjlit litu'.

This follows from the fact that each eipiation is satisfied l>v

planes which pass through a fixed point. Simultaneously, therefore,

the equations arc satisfied by planes which have two points in com-

mon, and these points are distinct if the equations are distinct. The

planes, therefore, have in common the line connecting the two points.

The equation of a straight line can therefore he written in

plane coordinates as the two simultaneous equations

</ // + ".,"., -f- '',.". + a n = ",

V'l + V's + 'Va + 'V<4
= -

VI. If "V'/,", ') and ^>
/^.H. (.) are tJie plane i'<f>iat!>>/ts

of two

points not <-<iiti<-id<'iit< then
V^'///,-f X'V/y/^-- I) i* ill,' plane equation ,,f

an// 1'otnt
on tlif Inn' i-o/inerttni/ fin- (irsf (//'

fio'mts. As X t<ik< x all

>'ii///i'x, all points ol a ra/ii/e can // (Jinx ol'tatned.

VII. If ^'t,'!,-- ', V/v/.= 0, and ^<;", are the plane , ^nations

of t ft ree points not in //,< same plant',
f //'// ]V",-",-+^-?

n
,

ll
i'^~f

j-^ '',",
- "

is tJie plane etptatinn "t' ami //"//// n fj/e plain
1 diti'nuiind I,

if tin 1

first

thr<> points. As X <///</
fj.

tah',' all i-af/ii's, all
jioints ,<// //,, plane /-an
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The proofs of the last t \\ o theorems follow closely from theorems

I and II of :< s:>.

'1 he theorems ol this section are plainly dnalistic to the theorems

of the previous section. \Ve exhibit in parallel columns tin.' funda-

mental (lualistic objects :

I'n hit

Points in a plane.

l'i lints in 1 \vo planes.

A strai^lit line.

Points of a raiiu'e.

Planes of a bundle.

riant-

Planes through a point.

Planes through two points.

A st rai^'ht line.

Planes of a pencil.

P< 'ints of a plane.

EXERCISES

r ./ 4- / ./ + / ./ 0,
-2 -J

1^
:! :i

'

-1 4

and write the similar condition for two lines, each defined by two

points.

4. Two conjugate iina;.';inarv lines beiiiL,
r defined a> lines Midi that

cadi contains the conjugate imaidnarv point of an\ point of the other,

show thai if two conjugate iniairinarv lines intersect, the point of inter-

sect ion and the plane of the two lines are real. Hence M'IOW that

eon pirate ima vmarv lines cannot be on an ima'_i'inar\ plane.
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5. Show that if a plant' contains two pairs of conjugate imaginary

points which arc not on the same straight line the plane is real.

6. Two conjugate imaginary pianos being defined as planes such that

each contains the conjugate imaginary point of any point of the other,

show that the plane coordinates oi the planes are conjugate imaginary

quantities, and conversely. Prove that two conjugate imaginary planes

intersect in a real straight line.

85. One-dimensional extents of points. Consider the equations

F-^/.co,

PV^CO.

where t is an independent variable and/.(0 &YV functions which

are continuous and possess derivatives of at least the first two

orders. We shall also assume that the ratios of the four functions

J\(t) are not independent of t. Then, to any value of/ corresponds

one or more points j^: ./,: ./,: j
-

4
, and as t varies these points describe

a one-dimensional extent of points, which, bv definition, is a <'i/rc<'.

It is evident that because of the factor p the form of the functions

,/',-( O imiy be varied without changing the curve, but there is no

loss of generality if we assume a definite form foi\/j.(Q and take

p = l.

'

Let
//,

be a point /' obtained bv putting /
/,

in (1 ), and let (,>

be a point obtained bv putting t
f, -(- A/. Then the coordinates

of (
t
) are >/ t

-\- A//., and the points /' and (
t
> determine a straight line

with the equations
P J

',

=
.'/,-+ P (.'/,- + -V,)

or err
//, -f- XA//,, ('2)

where the ratios of A//, and not the separate values of these quantities

are essential. As A/1

approaches y.ero the ratios A//,: A//.,: A/A, : A// (

approach limiting ratios ////,: ,/>/,: ,/_//.,: <!//4 =.t'(( t
l }:f'.(t l '}:Jl(t l )'-.<'[( ^ )-

and the line (1^) approaclies as a limit the line

p.r= //,+ X./y,.= f. (/,) + X/;'(/,). ( :{
)

whicli is called the t<i/i</,'/it liitf to the curve. At //(/// />"/'nf
'//'///*'

i-n/'i'i- nt /r/it'i'/i tin' fuiir ih'l'li'ittil'i'K /*( /
) </'/ imt ranixli, t/n'/'i' IK it

</< flint!' filni/i'/it linn.
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The points //.
and //,+ '///,.

whicli suflice to fix the tangent line,

are often called <-<ii(*t'<-uti>'<- point* of the curve, hut the exact

meaning of this expression must he taken trom the fore< roin< r~
i r"> o

discussion.

We .shall now show that tin- t<in</fnt litifx t <t <-urvc in Oie n<-i</h-

ItnrJiuud of a fixed point <>J tin' atrrr _t"nn it point c.rd'/tt of dco dinitit-

s/'otix, unli'Kx in (In 1

nt'lyhliurhoud <->t t/tf j>"/n( in
tjut'tttmi the curct- in a

atntitfht /t/tf.

This follows in general from the fact that equations ( -V) involve

two independent variables (
}

and X. To examine the exceptional

case we notice that at least two of the functions /j(/) cannot be

identically /ero if equations (
1

)
do not represent a point. We

shall also consider the neighborhood ot a value f
}

in \\hich _/'(/)

are one-valued, and shall take/3 (0 and/4 (f) as the two functions

which do not vanish identically. We may then place '-f- r and

replace equations ( 1 ) bv the equivalent equations
' 4

liei'e /' ( T )
and /',( T )

are one-valued in the neighborhood considered.

The equations of the tangent line are then

and the points on these lines form a two-dimensional extent unles

/;(T 1 )+X/-';(r
]
)-(/)/T 1

-f X). (/ . 1, -J) (.")

From this follows, hv different iat ing (
>

) with respect to X,

/;'( r
t

)
=

</>; (r, -f X), (d

and hv differentiating (>) with respect to r
}

,

/''/( T^-f-X /',"( Tj") (/),'( T,-f X), (7

and from (
<i

) and ( 7 )
we have /'"( T, )

- d
: whence /'

( T, )
-

- ,T + <_.,
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Equations (4 )
then reduce to

p.r. T.

,,=1.

These are the equations ot a straight line and the theorem is proved.

('nli-idcr How three points, /', (
t
>. It, on till' dine (1) with

the coordinates //,.//,+ A//, . and
// 1

-f- A//_ -f A ( //, + A//_ ). the incre-

nieiiis corresponding to the iiiei'einent A/1

; that is,

;/ /'(/*,). //, + A//, =.''.( /j
+ A/), //, + A//, 4- A(//. + A// i.)=./i(/

1

+ 'JAO.

Then liv the theorem of the mean,

A// =/,.(/, +AO-X-(' 1)=(/iV1 ) + e
1 )Af,

and hv e\pan>ion into Maclaurin's series.

\-if=fi
(t -f J A/)- 2./)(

The three [mints /'. o, and It (letennilie a plane whose eoordi-

nates " sati>tv the thri'e eijuations

"i'*i
^

"-.//..+ "
.
//( "+" "

1
//
= ^'

".A//. + //.A//..
4- " A//.

-i-
//.A//. <.). (s )

//
A"//.

-1- " A"//.,
-^ " A"'//.+ // A"// 4

<>.

As A'
1

approaches /.ei'o the three points 7', n. and It approach

coilieideiict', and the plane (*) appi'oaelies as a limit the plane

\\-hose coordinates satist'v the three eijnations

This plane is calli-d the <n*i-iiliif!n;i /-/'///-
at the point /'. It is

evident that "'
<tn</ j>"int /' ///.// /> in

<j,
,/./<// <i <l<linit< < l ffiil<(tin</

/>[>i/n.
'I he uidv exceptions occur \\ln-n the jmim /' is such that

the solution nf the
t-ijiiatii

ins ( 1
(

) is indeterminate. Writing these

c(|Uations \\ith derivatives in place \' dif't'ereiit ials we have

n, t\( f. )
-i- a t\( /

}
)
-u // ;' < /

. ,
-u ,/ t'

i
;

.

|

-

il.

"
} /l / )-(-"'"(/.) -I-

//,/'(/.)
-t-

'!./.<> )
= 0. Cl" )

"./'/; '. i <>_">
'

i

L //
f.'( '. , ",./*'( /, )= <.
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and in order that the solution of these equations should he inde-

termimuit it is necessary and sullicient that / should satisfv the

e([uatioiis formed l>v equating to /.ero all detenniiuuits of the third

order formed from the matrix

If these equations have solutions thev will lie in general discrete

values of t
i

which give discrete points on the curve at which the

osculating piano is indeterminate. To examine the character of a

curve for which the oscillating plane is evrvwhere indeterminate,

it is convenient to take the equations of the curve in the form (4).

Equations (10) then take the form

?/,/',( T)+ ",/:,( r)+ H..T + n
t

= 0,

//,/-','( T) +",/''(-)+":, ()
- (11)

//,/,"< T) + >i.,/-"J (T) = 0,

and these have an indeterminate solution when and oiilv when

A\"(T)=0, A*'( T )=0. (1^)

If equations ('.') are true for all values of r. the curve is a

straight line, as has ahvadv been shown.

Equations (1") determine ?/. as functions of the jiarauieter /
f

Therefore ///'' nxculcitinii j>/<iin'>< ';/'
f' nn'i'f f<*rin /// //encral n <>//>-

t'linit'nnfon(tl f.rti'tif <>f jit/mi'*. An exception can occur oiilv \\lien

the ratios of >i
f
determined liv (1") are constant. To examine tins

case take again the special form ( 1 ) of the equations of the curve

and consider equations (11). If the ratios //
t

determined l>y (11

are constant, it is lirst ot all necessar\" that

/;'( T)
-

,-,/,"( T):

whence !',(') <'J'',( r ) -(-
-

<'.,r + >'^.

I'^iiat ions ( 1 ) then heci uue
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and any point whose coordinates satisfy these equations lies in

the plane ,
. . _ n

It is evident from the dctinition that this plane is the osculating

plane at every point of the curve, and this can be verified from equa-

tions (11). \Ve mav accordingly make more precise the theorem

already stated by saving that the nuculaiinij planes i
if a -curve in (lie

n>/'//J"<r//"<l <>t' it ti.i'i '</ point nf the <-nr>'i- ^tun/i <t nne-Jimenxiunal ejii<nt

<>f planes >//(/..s'x the i-iiri'i- /x n i>Iirni' r//r/v in (lie neiiihl><>rhnnd <'<>nxidereil,
> / / '

If from equations ( 1
) the parameter t is eliminated in two ways,

there results two equations of the form

f (r . ? . ? . ? ^ = 0.

(13)

Conversely, any equations of form ( 1 -V) may in general be replaced

by equivalent equations of form ( 1 >.

EXERCISES

1. Show that in nonhomogoneous coordinates the equations of the

tangent line and the osculating plane are. respectively,

dx d,j tlz

.V - .r }' - ,/ Z ::

and

2. Find the tangent line and osculating plane to the following curves :

( 1 ) The cubic, jr f
:

\ >/
= f:

,
:; = f.

I L' i The helix. ./ = n cos 6. //
= " sin 9, :: = /.O.

(.") The conical helix. .r t cos /. if
= t sin /. ,v = //.

3. Show that the osculating jtlane may be detincd as the plane ap-

proached as a limit by a plane through the tangent line to the curve at

a point /' and through any other point /''. as /'' ajiprnaches /'.

4. Show that the osculating ]ilane mav al>o be detined as the plane

appi-oached as a limit by a plane through a tanp-nt line at /' and parallel

t" a tangent line at /'', the limit bciir_r taken as /'' appi'oachc^ /'.

5. The principal normal to a curve is the line in the osculating plane

perpendicular to the tangent at the point of contact : the binomial is the

line perpendicular to the tangent and to the principal normal. Find the

equations of these normals.
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86. Locus of an equation in point coordinates. Consider the

tM
l
Uilti"n

/('-, jr,, ./,, ./-,)=<>, (1,

where /' is ;i homogeneous function of ./ , ./, ./',,, and r, which is

continuous ;ind li;is derivatives of at least the first two orders.

Two of tin* ratios
./^ :./.,: .r

(

: ./ can lit' assunit'd arbitrarily, and the

third determined from the equation. The equation therefore defines

a two-dimensional extent of points which lv delinition is called a

surface.

If
_/'

is an algebraic polynomial of decree //, the surfaee is called

a surface ot the nth "/'//'/. AHII xtrtift/Jif //// nn'i'fx- </ N?//-M<V at' t/i>-

nth arili't' i/i n pinnta <>/ f/fx rnfirfly an thf xu /('<!<<'. To prove this

notice that a straight line is represented by equations of the form

P J\ ,'/,+ H<
\vhere

//,.
and ^

i

are fixed points, and that these values of
.?;

substi-

tuted in (1 ) L^ive an equation of the >i{\\ order in \ unless (1) is

satisfied identically.

A tiniiji^it I'm I- to a surface is defined as the limit line approached
bv the secant through two points of the surface as the two points

approach coincidence. Let
_// i

be the coordinates of a point /' on

the sui-face and
//, -f- Ay. those of a neighboring point

f
t

> also on the

surface. The points /'and $ determine a secant line, the equations
" f Wl ' ir1 ' ;UV

p-.^y.+ X^/.+ Ay,),

which can also be written

P-'\
=

'.I,
+ H^.'/r ( - >

where the ratios of Ay. and not their individual values are essential.

Now let the point (
t
> approach the point /'. moving on the surface,

so t hat 1 he rat ios Ay : Ay, : Ay.. : Ay approach definite limiting rat ios

1 1
;i

:
'///.,

:
<///.,

: </>/ . Then t he line ( '_' ) approaches t he limiting line

P->\ '/, 4~ P- '/'/,,
'

' *

which is a tangent line to the surface at the point /'.
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Hv Killer's theorem for homogeneous functions \\c have, since

//,
sal istics equal inn (

1 ).

rf ft' rf rf
'/, +.'/

' + .'/,
-' + //4

= ' ('I)
r
//,

"

'V/2

'

r
//, '//<

Hv virtue of (4) and (~>) any point .r of (3) satisfies the equation

r/' rf rf rf

This is the equation of a plane, and its coefficients depend only

upon the coordinates of /' anil not on the ratios
<l>i^: "'//.,-' '/,'/.,: "V/ 4

-

Hence all points on all tangent lines to the surface satisfy the

equation (
'

). Equation (
li ), however, becomes illusive, and the dis-

cussion which led to it is impossible when /' is such a point that

r f 'c f rf i f
= ',

' = 0, = 0, = 0.
r

.

;/
i

r
!'-i

r
.;/ 3

f
'H\

Points which satisfy these equations are called shi<pil<ir j>'>inta,

and other points aiv called r>';i>il<ir j>>>if*. AVe have, then, the

followiiiLT theorem :

In the equation ( fl
) the point i/ ;

is called the point of tan^encv.

Converselv. <//'//
////< i/rnn'ii in tin 1

tuiii/i'iit ]>lnni' tlirniiifli tin- /mint
*

>f
tu

niji ifij /x ii
tiimji'iif lin>'. To prove this take ,?r any point

in the plane ( ti ). Then

and the equations of tin 1 line through //,
and ,r

t

are

P->\
=

iti + X~V

I>ut a point
f
,>
on the surface may be made to approach /' in

such a way that <l;i : </>/, : '/// ,: ///
: : ;, :,:.:,:. since the only

restriction on
///_

is <_nven b\- (1). which is satisfied by .: . Hence

the line determined by
_// |

and
:_

lias e(|iiations of the form (''>) and

i- therefore a tangent line, and the theorem i- pro\eil.
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The plane coordinates of the tangent plane to the surface { 1 i

arc, from (
*! ).

P", (/ = !, 2, :'>. -1 ) < 7 j

(
'.'/,

The coordinates V, call lit- eliminated between these equal ions.

and the equation
/(//,. //.,, >/.., //

t
)- <

s
>

found iiy substituting >/,
lor .r in (1). There an- three pos.sihlc

results :

1. There may he a single equation of the form

(/)(//, H
,,

a , H )
--

( ',' )

This is the general ease, in which the equations (7) c;m be

solved and the results suhstituted in ( S ).

The condition for this is that the .Jacohian

ru, ( ii
., fit, iru., f't' f't' ft' 'f't'

r.r f .r f .r f .r c.r,f r ft'' cj\r.r,, r.//./'
1 '2 4 _ 1 -

'

- 4

f II , fll^ (II,, fit,
I

f't' f't' f't' f't'

ij' f
./\ f.r., ( .r

f./y./'.j
( .1 .f

.1'^
f .1", f

.>'.,' .<\

shall not vanish. In this case the tangent planes to (1) form a

two-dimensional extent and their coordinates satisfv ('.').

It (h ( a , u . >/,. ?/
) is an algebraic polvnomial of the ///th degree,

1 'J ." 4 '

the sui'face ( 1
) is said to be of the ///th class. 77* /<?/</// ///// Kfr>n';//i

hiii at iiliiiii'K 1'iin In- iitiMxi't/, tiiii'ii'nt tn :t siir/'iii'i ">' tin nit// i'/<ixx. I
o

pro\ e this notice that a plane through an\ straighl hue has the

coordinates
P" ,

==
'', 4" ^' /

',

where
'-,.

and /', are fixed coordinates. These values o| n
t

substi-

tuted in ( '.'
) give an equat ion ot the ///t h degree in \. I his proves

the theorem.

For example, consider the sui'face
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Tin- coordinates of its tangent plane are

P", ",.'/,'

and these values sulkst ii utcd in

a.
~

:

'ive '- + -'-

"i ",

Tlit' ordtT and class of this surface arc l>otli '2. but the class of

a surface is not in ^ciieral equal to its order.

L*. There inav he two etjuations of the foi'in

4>(
" r ,. /',, ?/

4)= 0,

~^r (
ii . /',. // ,, ti

)
= 0.

In this case the tangent planes to ( 1 ) form a one-dimensional

extent. The surface is called a
i?t'i't'l<>j)<ibl>' .v///;/'</<v.

I-'or example, consider the surface

The coi'irtlinates of a tangent plane at
//,

are

P" V Vr i .'.i .'4

The elimination of
_// i

from these equations and the equation

//.-(- u
4

0,

//,"'
-f- "

,"'
" "

: '

'.

;>. There mav he three equations ol the foi'lil

<^> (".",,",,//) '

'.

J^ (//,//, // , //
)

: <

I.

Y f ".",."..,") " "

The<e equatiniis can lie solvcil In]- // . Ileiiec in tins ea.M> the

tangent planes tdnn a disci'ete system.

|-"or example, consider the sin-face
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The tangent planes have tin- coordinates

These lead to the equation

Tin 1 tangent planes are the two planes./- ---(land ./ +./-(-./.- <>.

In fact the surface consists of these two planes.

EXERCISES

1. Show that the section of a surface made l>v a tangent plane is ;i

curve \shich has a singular point at the
jioiiit,

of contact of the plane.

2. Show that Ihe section of a surface of the n\ h order made \\\ any

jilaiie is a curve of the /;t h ordei 1

.

3. Show that anv tangent plane to a surface of second order inter-

sects the surface in t wo straight lines, and in particular that the tangent

plane to a sphere intersects the sphere in two minimum lines.

4. Show that through the point of contact of a surface and a tan-

gent plane there -'o in general two lines Ivinc, in the plane and having
three coincident jmints in common with the surface.

5. .Show that the equation y't,'', >'*.,''.) *' \vhere the function /'is

homogeneous in ./ , ./'.,. ,' and the coi'irdinatc ./ i.~, IIII.-.SIIIL,', represents

a cone, liv showing that it is the locus of lines through the point

0:0:0: 1.

(>. Show thai the tangent plane jo a cone contains the element of

Ihe cone through the jioint of contact.

7. l''rnm l']\. ," slnt\v that in nonhomopMieoiis Cartesian coordinates

the eijiiaiion 1\.i\ //.'.)
-

0. where /' is homogeneous, represents a cone

with its vertex at the oi'i^in and 1 hat
_/'i ./', //' '* represent s a cvlinder

wil h its elements parallel to n'/..

S. Show that through a singular point of a surface there
j,

roe-s in

general a cone (if lines each nf \\hich has three coincident points in

com mi m with the surface.
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9. Find the equation or equations satisfied by the coordinates of

the tangent planes of each of the following surfaces:

, 1 ) '_' u.r rr, + Ar/f + 07 - 0,

-f /,.r.r + r./Y
= 0,

;- + '-.r|
= o.

10. Sh\v that tli.- tangent planes of a cone or a cylinder form a

one-dimensional extent.

11. It' the fi[uation of a surface is written in the mmhomogenoous
form '. = f\.i\ >n, show that its tangent planes form a two-dimensional

1:2. Show that two simultaneous equations $ (./ . ,r,. ,r.,, ,r i = and

<5 i./-.. .r,, ./-
;

. ,;, i
= (I define a curve, and that if the tangent planes to

the curve are defined as the planes through the tangent lines to the

curve, thev form a two-dimensional extent Driven bv the equations

nil -
1

A
'"

toLretlu'l
1 with the equations of the curve.

r.r,
f ./

87. One-dimensional extents of planes. Consider the equations

*"',=/,( 0.

P" --- i' ( f ),

; ( 1 )

?".,=/:,< 0,

where
?/,

are plane foJ'inlinates, / an independent variable, and

f.(t) functions of / which are con-

tinuous and possess derivatives of

at least the lirst two orders. \Ve

shall also assume that the ratios of

the t'i nir fiinct ions_r <
f

) are in it in-

(!*'[
iclldeilt i 'f /. The ciplat i< >11S 1 hell

define a one-dimensional extent of

planes. 1.,-t / be the coordinates

of a plane /<
( Fi'_r. >''<) obtained bv

j>laciii'j
t -1 in C 1 ) and let ',. +A'-

t

be the eoordinates (,( ;i plane </

found by placiiiLT f-
^-(-A/. Then

/
and 7 determine a straight

line in. the equal ions > >!' which are

P" ' 4- AM ' -f-A/
1

,
)

' il
1

(TH - ' - \A'' .
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As A/1

approaches /cm tin- line m approaches, a limitiii'j; liiu- /,

of which the equations are

pn.= ',
+ X./r. =

>/;.(/ j
)+ V','^,)- (-)

This line is called a rluirnrtt'i'txtit' ol tin- extent defined li\- ( 1 ).

It is evident that /// <ini/ jiliim'
<>t' tin- f.iii'iit fr <rlii<-li tli,-j'<mr di-ric-

atif't \s f\ ( t
) </" nut VilHtK/t t/tfi-i' t* <i <l> finite (.'/m/'ilct i-fistic.

\Vf shall iuw pr<>\ e the pn>])ositioii

The t'luinii'ti'i'isticn form m ///// /// <f
*///_/

'(/. /<* ^7//,// ,</,//
/il/im'

"f

tin
1

dt'fininy Jjlitne
f.rtint t* t<in</iut ////i</ tin- i-ntii'i' f/it(/'iii-(i-rixtic i/t

th'tt
j>/'t/(C.

To pi-ovc this we notice that anv point ./-
(

which lies in a char-

acteristic satisties the two equations

2* -''. /

'

/ ' * j >f -
(

and that in general / iua\
p he L'liininati'd t'roin thoe t-ijitations with

a result of the form
^(/j, j-

a
, J'

a
,

./;,)-
'.

(
} )

This proves that anv point on anv characteristic lies on the sur-

face1 with the ei|uat ion ( 4 ).

ly virtue of the manner in which (1 ) was derived we mav \\riti-

Avhere / is to lie deterinincd as a function oi
./_

troin the second o!

equations (
:> ). Thercfi >re

This shows that the tangent plane ot ( 1
) is the plane >/ o! the

extent ( 1 ) and that the same tangent plain' i^ found for all points

for which f has the same value: that is, for all points on the same

characteristic. The proposition is then proved.

Consider now three planes, <v, /\ -f-A'v, /v -f- A>v + A( '
-

(

rA- 1

).

1 hev detei'inine a point /' the coordinates ot \\hieh satistv the

three eijiiations

A-'/' '-
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and as A/ approaches /.fro the point /' approaches as a limit a

point L tin- coordinates of which satisfy the equations

(0)V '

./</'-> ./ ,/-/ o,

or, what is the same thiii!^'. the equations

',.M + ',/_( '
> + .';,>;(

f
) + JrJ\(

= 0,

vV) + -'-,/^o + ';;/;' (') + .',/.;(/) =o, <?>

./,/','(
/

) + l'.Jr"( f
) + ./;,/';'(

t
) + J'J'"( f

)
- 0.

I'lie point /, we shall call the limit point in the plane >\
and shall

prove the following proposition :

77/. JIK-IIX i>f' tlif limit
fiu'iiits

/x in i/i'tiiTiil it I'i/rri, <-<tlli'il ///<

ri/xj'iiltll i-i/i/i', t" H'Jiifli tin' i-)i rtti-tt'rixti<-x iii',' til ii'/i'iit .

The lirsi part of the proposition follows from the fact that equa-
tions (f>) can in general he solved for

./-,
as functions of /.

To prove the second part of the proposition note that hv differ-

entiating the first two equations of (7) on the hypothesis that

./j,
./, ./, ./'

(

and / vary, and reducing the results hv aid of the

three eqiiat i< ms (7 ), we have

and t I'om < 7 ) and (
<
s

) anv values ot the coordinates .V \\'hieh sat isfv

these cipiat K ins sat 1st v alsi

that is. the point .\\
lies on the characteristic ( > ).

To complete the general discussion we shall now prove the

[

>r<
ipi

)>it ion

77/.' "Xi'Ufiftllli/ /'/'Itn.-- a/ f/,,'
r/lsfi/i/il/ ,<//,' Hi',- til,'

filililiH <>f tin

ill t: ii 1 1/'/ ['III
in i J't flit .

\\\ different iat in^ the lirst of equations (7) and reduciii'4
1 hv

the aid of the second equation, we have Wj^/j.f /
)

". Therefore
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by selecting tin- proper equations from (
'>

) and (
s

) and replacing

/( O bv
'_, we have the conations

y /,= ,
v,v /.,-^u. y <-.,/-./,= o.

Iut from (I'), ^ <s ->, these equations deline r
t

as tin- osculating

plant- nf the cuspidal rd^v. This proves the proposition.

In the foregoing discussion \ve have considered what happens in

general. To exaniine the exceptional cases we niav, as in sj S;">,

write the eiiuations (
1 ) in the form

The eijuatioiis ( '}
) for the characteristics no\v becom

J', /,'( T) + ^, /'',!(
T

) + ./', =0,

and tin; ecjuations (7) for the limit points become

./-, /',( T) + j\, /'( T
) + .';,T + ./

4
= i

),

.r
l J'[(T) + .rJ-"(T) + .r

:i

= 0, (11)

^, /",'(
T

) + ',/"'(-) =0.

'I he second o| the equations (10) can be solved for r unless

l'\(r)
--

,, /''.!( T)= ',:

whence /'(
~

) '',T -f e.,
/'_,( T) = c_,T-f

<-
4

,

and /"
I'(T)= I', /;,'( r)= 0.

In this case etjuations ( I'l ) become

so t hat all characteristics are t he same straight line. At the .same t ime

e<|iiat n ins ( '.' ) beci une
. i .

P "
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axis <>f the pencil is the straight line (1~) with which the charac-

teristics coincide.

Turning now to equations (11) \v(> see that the last one deter-

mines -/:./ and the others determine
./.,

and ./

4
, unless /'" (T) =

and /'.','( T) 0. This is the same exceptional case just considered.

The equations for the limit points become equations (12), so that

the limit point in each plane is indeterminate but lies on the axis

of the pencil of planes.

Another exceptional case appears here also when the solutions

of ( 11 ) do not involve r. This happens when

â"(r)
=

<',<<>);

whence /',( r) = <\J'\(r) + C.,T + c
a

.

Equations (11) then have the solution

J
'

l :jY.j'3
:j-

i
= c

l
:-l:c

z
:c

3
. (13)

At the same time equations (9) are

=
T,

All planes which satisfy these equations pass through the point (13).

The surface of the characteristics is in this case a <-<>n<\ since it

is made up of lines through a common point. The cuspidal edge
reduces to the vertex of the cone.

In vj
si! we have shown that the tangent planes to a surface

may, under certain conditions, form a one-dimensional extent of

planes, and have called such surfaces dwclopable xiirt\t<-fx. \Ve may
now state the following theorem, which is in a sense the converse

ot the ;ib( ive :

t'tifji
/><>//tf,

On' viirfiifi- //t<i// In' <>iit' nf thf 1'iilloii'iii'i thrc? Icini /,v :

1. It nut *t f'i
i-'inijHiMftl

i>t' titm/i'iit li/ti'x f n
x/nii-i'

ctiri'f.

'2. It until Li- it ''"in. (If (/a' i'>'rti:<' /N <tt i/itinili/. tin- <-i>/it' iff a

I'l/JimliT. )

''>. If mnii ilt-i/i'/tifiifi' tntn t/ti' nj'ix (//'</
/ii'itcil

<>t
jthtm'is.
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In the above theorem the nature of the surface has been de-

scribed oiilv for each portion of it, since the foregoing discussion

is based on the nature of the functions J\(t) in the neighborhood

of a value of /, which fixes a detinite plane, a detinite character-

istic, and a detinite point on the cuspidal edge. In the simplest

ease the developable surface will have throughout one of the

forms given above. Next in simplicity would be the case in which

the surface is composed of two or more surfaces, each of which is

one of the above kinds. It is of course possible to define surfaces

which have different natures in different portions, but the char-

acter of each portion must be as above if the functions/] (t) satisfv

the conditions given.

The planes of the extent are said in each case to r/^vAy/ the

developable surface.

88. Locus of an equation in plane coordinates. Consider an

equation f^ ^ u^ (> ^ u^)= 0, (
1

j

where/' is a homogeneous function of the plane coordinates
,-.

\Ve

shall consider only functions which are continuous and have deriva-

tives of at least the first two orders. Two of the ratios // : </
,

: ;/
,

: //

can be assumed arbitrarily, and the third determined from the equa-

tion. Hence ///c
I'l^mitinn /vy/v.-v///* an f.r/,//f <>t' tiro tli/iH'mtivity.

If/' is a polynomial of the //th degree, then n planes belonging to

the extent (1 ) pass through any general line in space. The proof

is as in ^ Mi. In this case the extent is

said to be of the n\.\\ class.

\Ve shall not restrict ourselves, how-

ever, to polynomials in the following dis- /

eussion, but shall proceed to find some of

the general properties of the extent ( 1 ).

Let r
t

be the coordinates of a plane //

(I'ig. .>4) of the configuration defined by

( 1 ). and i\
-4- A'\ those of another plane y,

also of the configuration. The two planes /<
and

</
determine a

line in whose conations in plane coordinates (theorem I. ^ <
s

\
)
are

or, otherwise \\ritten. an . r -f- /^

whel'e the ratios oiil\ of A'' are esse
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Now let
<i approach coincidence with p in such a \vav that the

ratios A' 1

: A' 1

,: A'',: A''
4 approach limiting ratios </> : /;'o : // : // .

The line /// approaches a limiting line A whose equations in plane

coordinates are <n/.= *,.+ /Wr,..

'1'he dilYerentials (/< are hound only by the condition

cf, cfi cf-i cf ,

,1t = -Ji'+ '- Jr + Jv + --</< = 0, (-2)
rr

4

so that the planes with coordinates
ilt^: <lr^:<lc,: ilt- form a linear

one-dimensional extent which by theorem II, >j 84, consists of all

planes through the point /', whose coordinates are

cf cf cf cf

This point lies in the plane i\ since, by Killer's theorem for

homogeneous functions.

cf cf cf < f _
1

cc - cv *
f r

4
< c1234

which is the condition ( 1 ), ^ <s4, for united position.

A line L is the intersection of any one of the planes <lc^.
<!( : Jr., :

<lr^

with the plane ^ : r^. r., : r
4>

Hence the lines L form a pencil of

lines through /'.

The point /' is not determined by equations (
; >

) if

cf ( f c f c f
' = o. = o, = u, = 0. (,-/)

( r f r cv cr
i _ 3 -t

A plane for which these conditions is met is called a isin</u!<tr

plnnt- of the extent (1). Other planes are called rct/ulur ithint'ts.

\Ve sum up our results in the following theorem:

In nn if r><ja1nr plnn- p of tin* c./i, /if ( 1
)
tin r> //. * </ <1> Units point /'

<//M/ hie' "1 f/t>
j<,

/i<-tl i/'ith tlif rsrtfj- I' mt'1 in t/n'
jilnitf j

/,* t/n' limit

"_t the utft /.' I'tfiH "t
i*

iiit<l n nt'(i/fJii>/'i/('/ I'l'tiii
.

The point /' may be called the /////// point in the plane p.

'I he elimination of - from equations ( :>
> and equation ( 1 ), written

in
i\, will giy tin- locus of the points /'. There are three cases:

I. Tin- elimimttion may !_five one and onlv one equation of the

form i. /i: v
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The locus of
f>

is then ;i surface. If the extent ( 1
)

is <if the //th

class, the surface ('!) is also called a surface, of the /ah class.

II. There may he two equations of the form

The locus of /' is then a ciir\e.

III. '1 here may he three equations connecting .r
}

, r,, ./-
(

, j- . The

points /' are then discrete points.

We shall now show that the planes of (1) are tangent to the

locus of /' in such a manner that /' is the point of tangencv of

the plane j>,
in which it lies.

To prove this write equation (4) in the form

and differentiate. We have

Yr,/.r -^ i ,

which, 1>\' aid of ( '2 ) and ('!), is

Consider now in order the previous cases.

I. If .r. satisfy a single eijiiatioii (
t! ), we have

f d>
,

if d> ,
( d>

,^
,ls+

^
</.,;,+

*
ilj'

ic'.r ( ./' f .r c.f
1 -J '.', 4

r>v comparison of (S) and (
'.'

) we have p<\~ --' which shows
( .i\

that
'\

arc the coordinates of the tangent to
(/>

- <> at the point .r.

II. If
,/,. satisfy the t\\o ecjuations (7), we liave

A coinjiarisoii with (S) gives p>\
'

-f X '

- which sliows that
f ./' ( .r

>'
: passes through the line ot intersection ot the tangent planes to

(/)
'I and 0,

- and hence is tangent to the curve delined 1>\ the

t \\'o sii rtaces.

III. II the points ./-
(

are disci'ete points, \\c mav sa\ that each

plane of the extent is tangent to the point, through \\hich il paocs.
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thus extending the use df tin- word "tangent
"

in a nmnner which

will he u>eful later. Summing up, \ve say :

.1 t ir,,-,liun Ksi"iKil i.rt-iit "f jilitiU'X
'"//.v/x/'x ,,f

f>!iin>
x ?////'// <//Y

t'lii'i- n f .////-/ f" <f xiir/'i'-f "/' /" '' 'V//w / />/ ^ j>inf.

The theorem has reference, ot course, only to the neighborhood

ot ;i plane of the extent. The entire extent nuiv have the same

nature throughout or ilitTereiit natures in different portions.

89. Change of coordinates. A tetrahedron of reference and a set

of coordinates ./ having been chosen, consider anv four planes not

meeting in a point the equations of which are

/ ./ 4. ,/ ./ = i),
i.; .; n 4

(1)

il r 4_ ,/ _/ 4- ,i ./ 4- ,( ./ :

41 1 i-j -2

'

4.; :; 41 4

the eoeth'cients bein^ suhject to the single condition that their deter-

minant '/
ti

shall not vanish. We assert that if we place

then ./' are the coordinates ot the point ,/-
(

. referred to the tetrahedron

formed h\- the four planes (1). '1 he proof runs along the same

lines as that of the corresponding theorem in the plane ( >j -V ) and

will acei ii diii'_;l\ in a he given.

It is also e;isv to show that bv the same change of the tetrahedron

of reference, the coordinates >/
:

become n[, where

'I he change trom one set ot ('artesian eooidinates to another is

et'fected bv means of formulas which are special cases of ('_'). If

( j". if \ z\ t) are rectangular ('artesian coordinates and

,, , _L /, ,/
_i_ ,. ^_ ,. / 1 1

r i i

"
i

,/ ./
-

/;,// 4- -
,: 4- - / . ii. (.{)

.1 .1 Li/ 4- ,- ',: _U
, / ; . I)

ai'e an\' three iioiii larallel nlancs. and we place

pi/ /' I II J- 4- /,
,/

4- ,- : 4-
, / |.

p?
1

L ( ,i ./
'- I.

ii -f < : 4- , / ,.

pt' /.
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tin 1

quantities ./', //'. ;', t' are proportional to the perpendiculars on

the three [danes, and it is po>xille to adjust the factors /_ so that

''://':,;':/' niav lie exact Iv the ('artesian coordinates referred to the

jilanes (4) as coordinate planes, the coordinates liein^ rectangular

or ohliijiie according to the relative position ot the planes ( 1 ).

The equations (>) represent a change from a rectangular set of

coordinates to another set which niav or niav not l>e rectangular,

and conversely. A change from an oliliipie svstein to another is

represented l>v formulas ot the same tvjie, since the change niav

he brought about as the result of two transformations of this tvpe.

EXERCISES

1. Kind the characteristics, characteristic surface, and cu.-pidal cdu'e

of each of the following extent of plane-; :

1 1 1 P tf
}

= 1. pn.,= :> t. pit..= .".
/'-', P "

(

= /
;

.

(L'l pH {

--

- "I: Sill /.
pit,,:

.

- "/.' COS /.
,J/Y.r

: ,/'". f>.',
,/7.'/.

('.]} pil^ \ /-.
pit.,--

- - /. pi'..
=

I 1 + f-\, p", 1 -f /-.

( I
) p^ : '1 t. pn.,= f'~ 1. pn a

/-' f 1. pn 4
1.

2. If a minimum de\ elopahle is defmed as a one-dimensional extent

of minimum planes, show thai the characteristics are minimum lines and

the cuspidal edure is a minimum curve unless the developahle is a cone.

3. Show that the necessarv and siillieieiit condition that the surface

0.

4. I'mve that planes which are tangent at the same tune to t u o

^
r iveii surfaces, two LTiven curves, or a iriven suriace and a ^iveii curve

define developahle surfaces.

f). l-'ind the envelope of each of the following oiie-diiuetisional exlei t

of plane,;
(1)2 //, -r - :;+ I ".; L' 1 "f <>.

C2) .". ",",";
-

".'^
-

<>.

I'.'i) '/,

J + ;
- "f ".

6. Show that the minimum planes form a t \vo-diineiiMoiial extent

a. n d find its equation.

7. Show that
p.f {

-- --
j\<

I i -f >;/',
i

/
> < 1 .-.-"-. I i il-iine. ile\clop:tMe

surface and. eonverselv, that an\ dc\elopahle siii't'ace u Inch i- ii"1 a

coi it' or the axis of a peneil "f plane-, may he ex preyed in this way.



CHAPTER XIII

SURFACES OF SECOND ORDER AND OF SECOND CLASS

90. Surfaces of second order. Consider th<> ('([nation

5/WV= ' (."*,= ",*) (!)

which defines a surface of second order ( ^ M' ). The .Jacobian of

S> becomes, except for a factor 2, the determinant

called the tlim'riminnnt of the equation. \Ve mav make the follow-

ing preliminary classitication :

I. A 0. The surface has a doubly infinite set of tangent planes.

The plane equation of the surface mav be found by eliminating //,

from the e([itations

nil = n .r 4- it .r 4- u .r 4- <t .r ,
' i n i

'

rj j i:; :;

'

14 4

pi/ = n .r 4- it ./' 4- (i .r 4- </ .r .

'- ' - 4 4

(2)
P>'..= '< '' -+- ".,.''., 4- ".,.''.,+ ''.. .'' .

nil = n ./ 4- </ ./' 4- n ./' 4- " ./' ."4 14 1 '.'4 - :;i -. II I

and (M
|

nation (1 ). I Jut \\ com bin at ion of ( '1
)
and (1 ) L,

r i\"cs readilv

)i ./ 4- u ,./\4- //,./,+ // ./ = 0,

and the elimination of .r from this ei|uation and the set ('2) i_;'ivcs
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This is an equation of the second decree in
>/,.

lleiiee (/ *;//-

J\iff <>f tin' yt-ro/iif 'irilt-r for /////<// /// tlisfriminant ?'x not zi-ro /.s ulan

<i xitrt'tiff of tin' xt'/'o/iif ,'lnxx ( xj SS).

It is not difficult to show th;it the discriminant of (
>

)
is not

equal to /.cro.

II. A=l>. The tangent planes either form a one-dimensional

extent of planes or consist of discrete planes. These cases will he

examined later.

91. Singular points. l>y vj
Sti singular points on the surface (1 ),

J; I'l), arc <jiven by the e()iiations

<i ./ -f- '/ ./ 4- a .r -+- a .r 0.
11 1

'

!_ J
'

13 S
'

14 4

(I .r + it .r -f- '' '' 4 " .' (\
( 1

)

.)' 4- '' .r + " ./' + <t .>' 0,
l:t 1

'

'.'3 a
'

:i:i :i '.! -t

'/ ./ 4- it .r 4- '' .'' 4- " .'' = ".u i -J4 : ;i4 3 ti 4

There are four eases :

I. A '-
'I. Ivpiiitions (1 ) have no solution, and the surface has

no singular points. This is the general case.

II. A=-- 0, hut not all its first minors are y.ero. The surface has

one and onlv one singular point. Let
//.

he the coi'irdinates of the

singular j>oint and
,;,

the eoi'trdinates of any other point in space,

and consider the straight line

pj\= //.-f-
\r

(

.
(

_' )

To iind the points in \\-hich the line ( '2 ) meets the surface sub-

stitute in equation (1 ), '.to. Since the coordinates //,
satisf\- the

equation of the surface and also the equations ( 1 ), the result is

'I'his shows that anv line throu^li a singular point meets the >ur-

faee onlv at that point (
X = ), and there \\ith a doiihlv counted

point ol intersection. An exception occurs when
.:,

is taken on

the surface. Then equation (
;>>

) is identically satisfied, and the

line >!': lies entirely on the surtaee. I fence /// xinfiii-i-
t* <t <"/<

iritJi tin' xi in/ill,! r jiuiiit
nx tin' ri't'fi'.i: '1 here is no plane equa-

tion of the surface. Ill fact the tangent plane> form a siiiLrl\

infinite extent of [dancs, and their coi'irdinates are suhject to two

e< mdit K nis.
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III. A ". all its first minors are y.ero, but not all its second minors

arc /.t>ro. Hi [nations ( 1 ) contain two and only t\vo independent equa-

tions and hence the surface lias a line of singular points. If tins

line is taken as the line
.1^=

<>. ./ = in the coordinate system, equa-

tions ( 1 > show that we shall have <i =<t =
it,,.
= <i

, <>...= "., =<i =
'">.

and the equation of the surtace becomes "
u
.r~ + '2 /

) .,.',./.,+ ''.,''.;'
= "

At least two of the coefficients in the last equation cannot vanish,

since the surface has only the line ./ =0 and r,= of singular

points. Therefore the left-hand member of the equation of the sur-

face factors into two linear factors. Hence tin'
.<>///;/'//<'

i-nnaiatx ,f

fir,, ,//>////-/
I,I,IH,'X inti'rxi'i-f/'iii/ in tin' Jim' i >f sitHjuldr point*.

IV. A-:-", all its tirst and second minors arc /.ero, hut not all

the third minors are /.ero. Equations ( 1 ) contain one and onlv one

independent equation, and hence the surface has a plane of sin-

gular points. If this plane is taken as
./-,
= 0. the equation of the

surface becomes ./=-<>. Hence tin' vnrf'i'-i' i-o/tx/sftt <>f tl ^Lnn- f
xiinjul'ir ji'iintx ilnlihlif rci-k'iHt'tL

92. Poles and polars. The /"/<// y//////<-
of a point //,

(the /</, j

with respect to a surface of the second order whose equation is

( 1 ). vj I"', is defined as the plane whose coordinates are

The following theorems are obvious or mav lie proved as are

the >imilar theorems of : >4:

7. If tin-
i
a ilf ix "a //K' nt/rf'1'

1

''. f/f jmliir jiliii

tin-
fi'J,- li.-iii'i tin

f,ntnt if .'unt.irt.

II. T" l >''/'>/ }l'i!llf
ll'it ll XI /l</lllll I'

l><iillf
'it' ///,' Kill-fill

1

!'

'"//<'.vy)-///r/.V

ii
tini'jUi' juiliir jilii/n

.

III. T'i i >!',->/
jil'Di,' t't>n'i'x]ni)nl>*

'i
iini'iiii ji"li

ii'Jn ,i ,i,i,l 'i)i/// ii'ln n

tin 1/1.1, '/-i niili'l lit "t tji, xli'i'tili-i '/ > //'// 1'tinisli.

IV. .1
//"A//' i

il< Di i- I'uiililiiix its
ji'Ji

irjn ii it//,/ <,nli/ >r]n >i tli,'
ji'il,-

is

fill tin' >?//;',/,-,.

V. .!// /"/-// jthnii-x jinx* tln-oii'/li nil tin m'n>/ii/<ir [mint* / //,,

tiUl'lili'i' H'lnii ts II I'll i list.

VI. If 'i
/'"'nit

/' fi.'n mi tin
i>',l,ir /Jinn' 'if

<i
i>"int

<
t
>. tin n <

t

> h'<-x

mi ///,
jinlnr 1,1,1,1, ,,f I'.

VII. .!// tnniji'iil j'/.i/i,* tfn-'ni'jfi
<i

/>//)? /' /"//'// /// xurftfr in 'i

<!!,'' "'I,,','/, //'is in tli,
y,

.,/.//-
y,

/,//,, ,,/' /'.
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VIII. /'"/ <t xi/rtiK'f >if xt<<-nn<i "//('/ iritlimit Ki'tii/u/ni' ///'///> it /.

pnxxihl? iii 'in in fin/ff number "J triii/x f<> I'mixt ni'-t i> ti'fr>t/n-ilrn >',/

irjifi'/i 1'in'h fiii-i- ix f/n' jmliir jiluui' <>f f/n- nppnxitf ///'./-.

These arc xelf-p<>lttr
t^tniJn'^rniix.

IX. If nij xtrnii/lit 1 1 in- ni >x
puxxt'il t/ii'iiiti//! 'I [mint I'. ii/nl /,' iiinl

,S' (//'(' ///,' IllltllfX III H'/ltl'// Ill I lltl'I'Xl'l'tx ll ftllftlll'l' t Xl l',l)lll I, I'!/,'/' 1/11,1

<) in f/n' j>i//t
at' inti'rxi'i'ti'iiH <>f in iiml tin' i>liir i>l<nn'

>>t' I\ ///>/i /'

ii/nl <
t

> i/ri' humi'iiii' 1

I'onj injittt'x
irith

r^xju-i't
t,> /,' <///,/ ,s'.

In addition to these theorems \ve will state and prove the

following, \vhieh have no counterparts in ^ -\ [ :

X. Tin' /n'/'/r ['linn
1 * nf pntntx on <t r<i/i</>' J<>nn *i

jn'tn-i/
<>f jiJmn'x fin'

,r,n'x f //"///-// ix i-itlli'il f/n- fitjtli//lt<' />"/>//
Jim 1

<>/ tin' fnix,' <>t' //,, r<iii<i>\

Hfi-lj >/-i>fiilIi/ tin'
ji'ilnr i>!<DK'x tif jmitltx "ii tin 1 n.rix <>(' tliix jn'iifil /'////

ilnntlir/-
Jn'll/'ll

f/n' il.rix at K'Jnt'fl ix f/n' /ntxi' nt I In 1

ni'l'/l iliil /'ii/n/i'.

Consider anv rani^e two of whose points arc /' and n (!"!'_;. ")")).

Let the polar planes of /' and <
t

> intersect in I.K. and let ./ he anv

point of LK. The polar plane of .1 must contain hoth /' and
(,>

(theorem V I ) and hence the entire line l'<
t

>. Now let I! he anv

point on r<
t
>. Its polar plane, must

contain .1 (theorem VI). Hut A is
,^

anv point of l.I\. Therefore the polar

plane of // contains /, l\. This proves

the theorem. It is to be noted that the /

opposite ed^es of a self-polar tetra-

hedron are conjugate polar lines. /,/__

XI. If fll'n cniy lit/lift' flii/iir
/llli'X III-

ti /-xi-i-f, 1'iii-h ix f'Dir/i'/it fn fin* x/irt'i/i-i'

itt t/n'/'r tin'mt nf i/ift'/'xi'/'f >n)i.

Let t\\'o conjugate jiolar lines, /'n

and U\. intersect at It. Since //

lies in each of the lines l'<
t

> and I.l\ its polar plane must contain

each of these lines hv the definition of eon jugate polar lines. 1 1 cine

the polar plane o| /,' eoiitains // and is therefore (theorems 1\

and I ) the tangent plane at //. The t \\ o lines I.l\ and /'',' 1\ inu

in the tangent plane and passing through // arc tangent to tin-

surface at /'.
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EXERCISES

1. Show that anv chord drawn through a fixed point /', intersecting

at infinity the polar plane of /' with respect to a quadric, is bisected by /'.

Hence show that if a qiiadric is not tangent to the plane at infinity there

is a point such that all chords through it are bisected by it. This is

the i'i nf> i- of t he quadrie.

'2. Show that the locus of the middle points of a system of parallel

chords is a plane which is the polar plane of the point in which the

parallel chords meet the plane at infinity. This is a <li<i nn'trul /i/</nr

conjugate to the direction of the parallel chords. Show that a diametral

plane passes through the center of the quadrie, if there is one, and

through the point of contact with the plane at infinity if the surface

is tangent to the plane at infinity.

3. Trove that all points on a straight line which passes through the

vertex of a cone have the same polar plane ; namely, the diametral plane

conjugate to the direction of the line.

4. Show that if a plane conjugate to a ^iven direction is parallel to

a second Ljiven line, the plane conjugate to th" latter line is parallel to

the first. Three diametral planes are said to be I'niijiujnti' when each

is conjugate to the intersection of the other two. Show that the inter-

sections of three conjugate diametral planes with the plane at infinity

form a triangle which is self polar with respect to the curve of inter-

section of the qiiadrie and the plane at infinity. Hiscuss the existence

and number of such conjugate planes in the two cases of central quad-
rics and quadrics tangent to the plane at infinity.

5. Show that if a line is tangent to a qnadl'ie surface its conjugate

polar is also tangent to the surface at the same point, and that the two

con jugate polars are harmonic con pirates with respect to t he 1 wo lines in

which the tangent plane at their point of intersection cuts the surface.

G. Slmw that the conjugate polars of all lines in a pencil form a

pencil. When do the two pencils coincide'.' Show that the conjugate

polars of all lines in a plane form a bundle of lines, and conversely.

93. Classification of surfaces of second order. With the aid of the

results of the last two sections it is now possible to obtain the

simplest equations of the various tvjies of surfaces of the second

order which have already been arranged m classes in ^I'l.

I. Tin' i/i'ii, i-iil nu/'t'iti'i; A '

<>. The si i rface 1 ias 1 1 o si 1 1 o'u 1 ar
]

mi 11 1

( ^ '.'1 and there can be found ^elf-polar tetrahedrons ( sj ''-). Let

one such tetrahedron be taken as the tetrahedron of reference in the
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coordinate system. '1 lini the equation tit tin' surface must he such

that the polar of 0:0:0:1 is s
t
= 0, that of U : (j : 1 : is ./ <>.

that of 0:1:0: is ./.,= <>, ;U i,l that ,f 1:0:0: <> is ./

1

= <>. The

equation is then
"n-'T + ":;'; + ".,'.; +"-'Y "

(-;

where no one of the coetlicients can lie /cn>, for, if il \vriv. the

surface would contain a singular jmint.

Il is obvious that if the original tetrahedron of reference were

real and if the coelVicients in the original eijiiation of the surface

were real, the new tetrahedron of reference and the new coefficients

are also real. \Ve mav now replace ./,
in the last equation l>v <i

u .i\

and have three types according to the si-^ns of the terms resulting.

1. Th>' ////<'///'/"//// ////', ./;' 4 ./.: 4
''.["'
4 '',"

--- " (>)

This equation is satisfied hv no real points.

2. '/'/' >-l t
'/}>,; ./v + .'7 + .''f

-
.'V
= ( '

( * )

No real straight line can meet this surface in more than two real

points. If it did, it would lie entirely on the surface ( ^
Ml ). and

hence the point in which it met the plane ./ = ( > would lie a real

point of the surface. Hut the plane./-^ meets the surface in the

curve ./+.'.;' -f .''
; f
= ". which has no real point. Hence, as \\ as said.

no real straight line can meet the surface in more than two real

points. The surface, however, contains imaginary straight lines as

will he seen later.

Through e\ erv point of this surface -^o t \\ 1 1 real straight lines

which lie entirely on the surface. This follows from the fac_t that

whatever lie the values of \ and ft, the two lines

.''.,

-
.' -f- /u ( .r + ./ )

o

lie entirely on the surface. Moreover, values of X and /u mav he

easily ioiind so that one ot each ot these straight lines ma\ pass

through any point ot the surtace. '1 Ins matter \\ ill he discussed in

detail in '.Hi.

As the three tvpes of sitrliiccs here named are distinguished hv

properties which are essentially different in the domain ot ivahtv.
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the corresponding equations can evidently not be reduced to each

other bv anv real change of coordinates. However, if no distinction

is made between reals and imaginaries, all surfaces of the three

tvpes mav be represented by the single equation

II. Thf '"//. x. A ~ 0. hut not all the lirst minors are zero. The

surface has one singular point ( sj 1*1 ) and is a cone with the singular

point as the vertex. Let the vertex he taken as A (0:0:0:1).
Then in the equation of the surface 11=11 a. = /f = 0. Take

now as #(0:0:1:0) anv point not on the surface. Its polar plane

contains .1 (theorem V. t<'2
)
hut not />'( theorem IV, ^ '.-) Take

as r (0:1: 0:0) anv point in this plane hut not on the surface.

Such points exist unless the polar plane of />' lies entirelv on the

surface, which is impossible since /' was taken as not on the surface.

The polar plane of (' contains A and /.' and intersects the polar

plane of />' in a line through A. Take I> ( 1 : : : (I
) as any point

mi this line. We have now fixed the tetrahedron of reference so

that 0:0:0:1 is a singular point, the polar plane of : : 1 ; (.1 is

./ = (I, the polar plane of 0:1:0:0 is r
o
= 0, and the polar plane

of 1 :
'I

: ii; n js ./ 0. Therefore the equation of the surface is

"n-'Y-f ",.Xr -f ":M *;?= -

where no one of the three coefficients can vanish, since the surface

has onlv one singular point. P>v a real transformation of coordinates

this equation reduces to two tvpes:

1. Tin' innii/iiKirii </>>'.
./',"
+ ->'^ + ''."'

= "

2. Tin- fi-ttt <-nn>\ .>{+ ./-.:- r.f= 0.

III. T'/' >i/f>Txi<'f//i</ jilinn-x.
A ~ 0, all the first minors are /ero,

hut not all the second minors are /ero. This has heen sulh'cientlv

discussed (^'.*1 ). There are ohviouslv two tvpes in the domain

of reals ; naiiielv :

1. I iiniiji /i'i n/ jilii/nx, ./^--f-
./'-' 0.

2. /'..// i>/<mrx, ./-,-

- ./:- o.

I\'. '/'//-/ t'liiiK-iih-nt
/'/<i/iis.

A 0. all the lirst and all the second

minors are equal to y.rro. Kvidently the eijiiation in this case is

re(|iieihle to the funu '"
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but the plane ./' =0 is lint necessarily real. In tact the condition

tliut all the second niinors ol A vunisli is tin- condition that the

left-hand member of equation ( 1 ), vj '.MI, should be a perfect >quare,

as is easily verified bv the student.

94. Surfaces of second order in Cartesian coordinates. As \\ e

have seen ( vj *'2 ), we obtain ('artesian coordinates l'r<>m general

<|iiadri[)lanar coordinates liv taking,' mie oi the coordinate planes as

the plane at infinity and i_n\in^ special vahie> to the eiin>taiits / .

'1 his being' done, the general equation <>| the second decree will

be written

'i.r+f>.i-- -f ';"+ 'Ifir- + -//:./'+ -//.'// -f- -/.// + -2
////// i -ln\t -u. ,//-. o, ( ] ,

which reduces to the usual noiihomoj^eneous form \\heii / i> placed

etjual to 1.

Fur equation ( 1 ) the results of
JJJJ

'.Hi <:; remain unchanm-d

except for a slight chaiiLTe of notation. \Ve \\ill refer tn the ctiua-
L *T> i" 1

lions ot these sections bv number and make the neeessarv change

in notation without further remark. A>sumin'_;' that A ; " \\ e

ma\' find the pule of the plane at intinitv, I'm- example, hv placing
>i

t

in eijtiations ( 1 ). ^ I 1
'-', equal to the coordinate^ : U : '.) : 1 of the

plane at intinitv. There result the equations

(I.C + //// + </ -)- It .-~ <,

//./ + l<i + t'- + nit -- u,

(2)
//./ +./// + ' + nt = U,

/./ + in.
1! + HZ + i/t

- -

p.

tlie solution of which is the coi'irilinates of the pole required. Thi>

pole is therefore a linite point when the determinant

is not /.ero and is a point at in tin it \ when /' < '.

In the latter case, \>\ theorems I V and 1. ^ '.''_'. the surface i>

tangent to the plane at intinitv. In the former case, it the pole

of the plane at infinity is taken as H:0 :():!. then / // ''.

and consequently it appear.^ that if
./^

:
//

1

::,:/, is a point on the

surface, j' : //_:
-

:. : /. i> aUo on the surface. 'I'he point is

therefore called the <-,-(, r of tin- Mii't'aec. and the >urface i- called
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;i <->>nti'<il #iirt'<ii;-. Conversely, it a surface without singular points

has a ('filter (that is, if there exists a point which is the middle

point of all chords through it ). that point is the pole of the plane

at inlinity. This follows from theorem IX, vj I*!*, or may be shown

bv assuming the center as the origin of coordinates and reversing

the argument just made.

We have reached the following result:

A .vi/rt',1,-, <>t' x, <;,/i, 1 nfijt'i- trit/i (lie I'lfuatinn (1 ) i* <'<'ittr<il unrfitce

"/ <i nmti-t -nti'itl xttrtiirf <ii-i;i/;/tit,/ <tx (hf tlt'tt't'/iiitiiliit I> in /ft <>r ix

,<initl /<- zct'ij. A itmicoiti'iil xiirt<(<-<- <* tidcji'Ht t<> th<'
j>l<ini'

<it infinity,

Holding now to the significance of the determinant A as given

in vj i )( ) we may proceed to lind the simplest forms of the equa-

tions of the surface in ('artesian coordinates. There will be this

ditYerence from the work of ^
(

.'o that now the plane / = plays

a unique role and must always remain as one of the coordinate

planes. The other three coordinate planes, however, mav Vie

taken at pleasure, and we shall not at present restrict ourselves

to rectangular coordinates.

1. ('i/tf/-'il snrJ\i'-,'K without xiiti/uhir jioints. As in
Jj

'.'<, bv refer-

ring the surface to a self-polar tetrahedron one of whose faces is

the plane at intinitv its equation becomes

".''+ t>>f+ <-r+ <1t-= 0.

According to the signs of the coefficients this gives the following

tvpes in nonhomogeneotis form:

,.,. . . ,,. . , ./" //"
~~

_,

( 'i ) 1 he imagmai'V ellipsoid, -f-

'

,+ .,= 1.

(/- ) The real ellipsoid. +'.,+
"

= 1.

(<) The hvperboloid of two sheets, =1.

'' / :'

J

= ^
. * /

'

./" // i-

II. \"in'> nt rill }<iir1'iii-tx ir'itfiKiit xiniiiil'ir 1'ii'uitx.
Since the plane

at intinitv can no longer be a face of a >elf-polar tetrahedron, we

cannot use the method of
jj

\*'.\. We \\ ill take the point of taiigeiicv
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in the plane at infinity as /.' ( : o : 1 : o ). Then //=./' c " ami

n 'r- 0. Take an arbitrary line through />' It meets the surface

in one other point .1, which \\ e take as 0:11:0:1. \\Y then take

the tangent plane at .1 as 2 = 0. Then / = m = d = 0, and the

equation of the surface is

</./- -f _
//./// -f ///- + </-= 0.

The tangent plane at .1 meets the plane at infinity in a line

(,?=(), / 0), \vhieh is the conjugate polar to the line .I/.' (./-- (),

// ). The points ('(0:1:0:0) and l> (1:0:0:0) mav he taken

as anv t\\'o points on this line such that eaeh lies in the polar

plane of the other. Then h 0, and the eijuatioii of the surface is

reduced to
</./" + /-//--f //' 0.

According to the signs which occur we lui\ e two t\'pes:

1. Th.' oval type:

The elliptic paraboloid, ,-f
' = nz.

<r f>~

2. The x.t.lll,'
ti/jH-:

The hvperljolic paraboloid,
'

.,

'

,= nz.
<r l~

The discussion of surfaces with singular points presents no features

essentially different in ('artesian coordinates from those found in

the general case. If the surface has one singular point, it is a cone

if the singular point is not at intinitv and is a cylinder if the sin-

gular point is at inlinity. If the surface has a line of singular

points, it consists of two intersecting or two parallel planes accord-

ing as the singular line lies in finite spare or at inlinity. If the

surface has a plane of singular points, it consists of a plane doubly

counted, which may he the plane at inlinity.

95. Surfaces of second order referred to rectangular axes. In the

preyiotis section no hypotheses were made as to the angles at which

the coordinate planes intersected. For that reason the coordinate

planes leading to the simple forms of the equations could be chosen

in an infinite number of ways. \\Y shall now ask whether, among
these planes, there exist a set in which the planes ./ o. // 0,

and r -0 are mutually orthogonal.
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Consider first the central surfaces without singular points for

which /> - 0. Tin- plain
1 at infinity cuts this surface in the geu-

,.- + L,r + ,-z- + -2/1/2 + -2 uzjT + -2
/,.,-,/

= 0, (1 )

\vherc ./ : >/ : z are homogeneous coordinates on the plane / = 0.

When the equation of the surface is referred to a self-polar tetra-

hedron of which the plane at infinity is one face, the eiirve (1) is

referred to a self-polar triangle. If the axes in space are orthogonal,

the triangle must also he a self-polar triangle (theorem V, vj Si)

to the circle at infinity

r+y'+r^o. (-2)

( )nr problem, therefore, is to find on the plane at infinity a triangle

which is self polar at the same time with respect to (1 ) and ( 2 ).

P>y 4o this can he done when and only when the curyes (1)

and (_) intersect in four distinct points or are tangent in two

distinct points or are coincident.

In the first case there exists one and only one self-polar triangle

common to (1 )
and ( '2 ), and therefore there exists only one set of

mutually orthogonal planes passing through the center of the quad-

ric and such that by use of them as coordinate planes the equa-

tion of the quadric becomes

./- -f- 1,,
1

4- ,-r + ,7 = 0. < =t= I - < =t
)

These planes are the principal diametral jJiun-x of the quadric,

and their intersections are the principal n.ri
:

x.

In the second case there are an infinite number of planes through
the origin, such that by use of them as coordinate planes the equa-

tion of the (juadric becomes

a ( .r + //'

J

) + >-- + -/ = 0. ( ,/ --*= ,- ~
)

Here the axis OX is fixed, but the axes O.V and O Y are so far

indeterminate that they may be any two lines perpendicular to OX
and to each other. The surface is a surface formed by rcyolying

the conic 'i.r+ '-+ '/ --- 0.
//

--- about <>/.

In 1 lie t hi i'd case any set of mutually perpendicular planes through

the origin, if taken as coordinate planes, reduce the equation ot the

iiuadric to the f< n-m -"" *
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It is t<> !> noticed that if tin- coefficients iii equation ( '2 ) iin-

n-uK one ot tli'' iibovu cases lU'ci'ssiirilv occurs. ! or in this case

the solutions of equations (1 ) and ( '2 ) consist of inmgiiwrv points

which occur in pairs as complex imaginary points.

If \ve consider the iioiicentral qiuulpies without singular points

and use the notation of
J;

'.' 1, \\ e notice tirst that if the axes of

coordinates are rectangular, the point //cannot IK- on the circle at

inlinitv, since the line ('/> must le the polar of ]i with respect to

the circle at inlinitv. I he point I'> bein^' lixi'tl liv the ijuaih'ie sur-

face, the line C/MS then fixed, and consequently the line A l>, since

All is the conjugate polar of Cl> with roped to the qiiadric. The

point .1 is then fixed and is called the /v/vV.r of the (piadric.

The points (' and 1> must MOW be taken as conjugate, both with

respect to the circle at inlinitx and with respect to the conic ot inter-

section of the qiiadric and the plane at inlinitv. If the two straight

lines into which this latter conic degenerates ( cf. Kx. 1, ^ sti
j are

neither of them tangent to the circle at intinitv, the points (' and

/> are uniqiielv fixed. If both of these lines are tangent to the cir-

cle at infinity, the point (' may be taken at pleasure on ('/>, and l>

is then fixed.

In the first case there is one tangent plane and two other planes

perpendicular to it and to each other, by the use of which the equa-

tion ot the ijiiadric is reduced to the lorni

(/./- 4- /,</-- us. (n - /
)

In the second case then- are an infinite number ot mutuallv

oilho^onal planes, one of which is a fixed tangent plane, bv the

Use o|' \\hicll the eijllatioli of the (ptudl'ie is reduced to the form

H ( .>'"+ //" ) >IZ,

and the (jiliidrie
is a paraboloid ot pi-volution.

In all other cases, namelv, when the point ot taii'_;vncv ot the

(piadric \\iih the pi,me at mtiniu is on the circle at mlimtv or

\\heii the section ot the i|iiadptc \\ith the plane at intinitv consists

ot two straight lines, one and onl\ one ot which is tangent to il.e

cii'i-le at infinity, the equation oi the surtacc <'annot be reduced to

the above forms bv the use of rectangular axes.

It' the coefficients of the lel'lllS of the second order ill the equation

of the iiuadric arc real, the rectuii'''ulai' axes alwa\s exist.
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EXERCISES

Examine the following surfaces for the existence of principal axes:

2. L' ./-+ (
1 + /)//-+ ;;- + (

1 + /).///
= 0.

3. .r- + 2/X-+ 7 .-.-+ I
///:: + 1 = 0.

4 . L' .!- f -.- + 1'
/./// + 1 = 0.

5. ;i ./- + L'
//- + 7 :.- + ///.v +1-0.

G. ./-+ 2
/.r//

-
//-- ,v-+ 1> :; = 0.

7. ./;. + ///.-: +r = 0.

8. ./- - L'
/./// + //-+ 1' ./ + L' ,v = 0.

9. Examine the quadries with singular points \\\ the methods of

this section.

96. Rulings on surfaces of second order. \Ve have seen ( \\'-\)

that the equation of any surface of the second order without

singular points can he written as

it no distinction is made hetween reals and iniaginarics or hetweeii

the plane at iiilinity and any other plane. This equation can he

X ,.,,
A., (_)

.,,
: _**=

(3)
./ /./ ./ t.l'

:i -t 1 2

whence follows for anv point on the surface

./

1

:
./-.,

: ./
,

: ./'

4

----- X/z + 1 : / (

'

X/x + 1 ) : X -
fj.

: / ( X + ^. ( 4)

l-'roin these (Mpiatioiis the following theorems are easily proyed :

/. <>ii <t xii i't'ii'-i' f si'foml "/'/-/ tt'it/tmit xi>ir/n/<ir /^////.v
//,- t//'<>

t'ltntiliix nt' xtrii'n/til ////ex, nn,' i/i'fitii'i/ In/ I'l/udtt'iitx (-) diiil f/n' <>(/n'r

In/ i ninttinnx ( ''> ).

For if X is '4'ivcii any constant value in ( "J the eipiations

represent a slrai<_dit line e\ci'\' jioint ot which satislies cijiiation ( 1 ).

SimilarK . fj.
mav lie L;i\-eii a con>iant \aliie in (-1). The straight

lines (-2) and (
''>

) are called '/<//,//>/<//*.
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II. Tlll'iilHjh i'ili'/l
Jin/lit "J~ tin Xlirt'iti'i' i/ni X "in' ill/-/ null/ "in Hi"

nt' , ili'/l f'l nil'I
'_//.

For an\' point r of the surface determines X and /z uni(|Uely.

///. l-'iifli lint' "t' "II,' fit/nil i/ iiit>-rx,'''t x , ilfli //it, "f tin "tin r t'liinil i/.

For anv pair of values of X and p. leads to the solution ( I ).

IV. X" tn'" ///n x "f th,' xiim,' t'ttinilii iitti rxi'i-t.

This is a ci irollar\' tot heoreiu 1 1 .

V. A f't/ii/i'tif /i/'i/ti
'it 'In if /'"'nit

"t' tin xiirt'tln' int, rx, ,-tx tin xtn'-

t'tifi' in tin 1

tii'n 1/,-in i'iit"i'x tln'"ii<jh tlntt
jiniiit.

For the two generators arc tangents and hence he in the tangent

plane, lint the intersection of the tangent plane with the surface

is a curve of second order unlos the plane lies entirely on the

surface, which is impossible since the surface has no singular points,

llciice the section consists of the two ovnerators.

VI. Til,' xil
rfiii','

f"iitiliiix it" "tin r xt /-iiii/lit lim 'x lit, 111 tin' ,/, n , /'<///,<.

For it' there were another line the tangent plane at am point

of the line would contain it, which is impossible bv theorem V.

VII. A ni/ /i/it
in' tJi/-"iii/li <i i/,ni-/'ii/",' intii-xii-tx tin xi/rt'ii'-i i//x" in

if </> if /'//"/ "t' tin "tin r t'tlinUi/ inn/ lx ti/nif, nt t" tin xn rt'ti <>' 'it tin

imtnt "I i nt i /'xii't mn "t tin' tti'" i/i'/ii' /'iif"/'x.

('onsider a plane through a generator//. Its intci sect ion with

the >urfaec is a curve of second order of which one part is kno\\u

to be i/. The remaining part must also be a straight hue //. \\hich

is a n'eiierator b\ theorem \'l. Since // and
//

are in the same plane

t hev intersect and hence belong to different families bv t heon-m 1 \ .

The lambent plane at the intersection of // and </ contains these

hues by theorem \ and hence coincides \\ith the original plane.

VIII. It' 1 it'n
jitiii-ilx

til'
[limit'*

H'itll tlnir il./ix ,/, in ,;/t",-x ,,f tin'

xiiuif til/////// i//-i' ln'"(i'llit int" il "iii'-t"-"!!,'
'"/i',xji"iitl,in-,

X" t/nif t /i'<>

i'"i-r,xji"inl
i ml nlilinx //ifr/'Xi'i'f in <l i/i/n /'ilt"/' "I (In "t In r t'imtl'1, tin'

/< I ill l"ll IX I't'" ll'i't I I'l .

Let the axes of the l wo pencils be taken as ./ o, ./
" and

./ -- ". ./ ;__ I) respect i\fl\. Since these lines lie on the surface, the

e 1

1

u a 1 1 o 1 1 (if the surface has the form

f .1 ./ f
< ./' ./' f

i

1

./' ./'-(-'/./ * '.
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The equations of plam-s of the first pencil are

.'',
4- X./'n

=

and those of the second are

'a + /"<= ()
'

If two such planes intersect on the surface, we have

\\ hich proves the theorem.

IX. Tin 1 tuti /'Kt I'ttonx nt tin'
rni't't'tlJtonJltli/ j>l<(llt't*

nt 1 U'o
jii'ii

it'i't l ft'

[n it'-tlx nt ithint'x ti'lth nnitt titfi'ni'i't
tiiij

d.ci'x </<-/<r/'i(/i' <i utii'titff nt tst'i'uiid

"/</-/ ichi'-h i-ontiitnx tin' fi/'n <l.r< x J tin 1

pt'iu'tlx.

Let the two pencils lie ./ -)- \.r = () and .V -f a.r = 0, \\ here the
A _ -i 4

, Up, + fi

prdjeetive relation is expressed Lty
\

Then if a point is eonimon to two corresponding planes, it

satisfies the equation

which is iilso satisfied bv the axes of the pencils.

X. (Dualistic to VIII.} Lin*-* <>f <>m- j'nntilii <>f </!//> nit< //-.- <-nt out

1'i'oj,
,-ft'r,- rtiitijfx on mill t ii'n lini'X of tin' of/i,/' t'llinili/.

As in the proof of theorem YIII, let ./ -- U, .r
,

l>e a generator

of the surface and let .*'.
= 0, ./' =0 lie another generator of the

same familv. The equation of the surface is then

' ./' ./' -f-
'

./' ./' -\- i' ./' ./' -j- r ./' ./' - -
'

I,
1 1 i

'

J 1 l
' :;_:;' I _' 4

and the generators of the second familv are

A '.Ti-neriitoi- of this familv meets ./ ", ./ _ n in the point where

./ : ./ ' -f ' 'V : ' ' X and meets ./ o. ./ (I where .r : .r \ : 1 .ii'-.'.;i i i

I he relation i> evidentlv pro|eetive.

XI. (DualistiC tO X.) Tin ////. //7//'7/ <-ll/H-rt <;,,-,>
*////,///,_,/ /mints

_t
tii'.,

i>i'j>
-i-li i'< i'il inj, K irittt nmiuiti t'xi i-tlinj ///M .v //- mi / nil

I'filfi'
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Let one ranin- In 1 taken on ./ = <>, ./ = (I anil the other on ./ = (I,

./ <). '1 hen tlie points o{ the t\vo ranges are i^iven on each base

hv the equations ./'.. -f X./'
4

-- and J-+fJ.J'n l). Let the projective

11 'J/x 4-/^
relation be expressed by A

7ft -f 6

From these it is easy to eoinjuHe thai the coordinates ot anv point

on the line connecting two corresponding points ot' the two ranges

satisfy the filiation

EXERCISES

1. I M^tinLruish hetween the eases iii \vhirh the ^ciieratiirs are ival or

iinau'iiiarv, assuming that the eijiiation uf the i|Hadrie i> real.

2. \\lia1 are the ^eiiei'ators of a >pliere '.'

3. Distinguish liet \veen a central ipiadric and a nonceiitral one l.\

>linwiii^ that fur the latter type the general urs arc parallel t<> a plain-

and for the former they are not.

97. Surfaces of second class, ('nnsider the equation

V.I,,: ii,>' k
= <>, ('!,,-= A

it ) (1 )

in plane coordinates. This is a special case ot the equation dis-

cussed in x
ss

. liquations (''>). $ **. which determine the limit

points, become

p.'\ .I.,//, 4-J ,,//.,+ - 1,,,";,+ -'>4"r ( /--= 1. -. ; 5. 4 ) < - )

and eq H at ions (
~> ). >

ss
. \\'hieh del i ne the singular plan ex. I KM nine

.!, ,//, -f. /..,?/., 4- .1, //,+ J,.,/^
= <. (/ =1, "2. :'.. 4 ) ('.})

I !' we no\\ place

we have to distinguish four cases.

I. A "

n. Htjuat ioiis( ^ ) have then a single solution for //,: : >/ : ",.

which, it' substituted in ( 1 >. Lfives the equation of the snrlace en-

veloped hv the extent of planes. 'I'his equation may l>e more eon-

N'enieiitlv obtained hv replacing ( 1 > liv the equation
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obtained from (1) by the help of (-). The elimination of ?/. then

inves

I,

which is the equation of a surface of second order.

1'nder the hypothesis A equations (}) have no solution, so

that in this case no singular plane exists. It is not difliciilt to

show that the discriminant of equation (4) does not vanish.

We have, accordingly, the following result: .1 />/atn' fj-d'ut <>f

second das* icith nonranisJiiny discriminant consists ofplanes cnrd'>j>-

in<i a surface of second order without ssitujular points.

This theorem mav be otherwise expressed as follows: .1 snrf<t<'<'

of st'fom! dass without sini/nfar plants is also a s>irf<i<-i' <>f s^<-<>n<l onlfr

without shii/ufar pohifs.

II. A = 0, but not all the first minors are x.ero. Equations ( :>) now
have one and only one solution, so that the extent (1 ) has one and

only one singular plane. Let it be taken as the plane (1:0:0:1.

Then
A^ t

= A =A
n4
-=A =Q, and equation (1) takes the form

.l, 1
M

1

2 -M,2
?/

s

s+-V/
a

2+ 2,l
1,?/,?/,+ 2v/

1:,M,/3 + 2J 23
M
2 ?/

3
= 0, ((i)

\\'here the determinant

Iocs not vanish owing to the hypothesis that not all the first

rs of the discriminant (4) vanish.

The elimination of u
t

from eijuations d) and equation ('>)

iyes, then,

which are the (-(illations of a nondegenerate conic in the plane
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We have, accordingly, the result : .1
/</<///

,.rt<nt nf WUH,I ,/,>.,.>,

it'ith <>/t< xin</nl<ir plnnt
1

t'linxftitx n
t
f iilnni'K n't/'u'h <tr>- tiitn/i/if / / ii"ti-

i/i'i/i'/ii'/-nfi' I'nnii'
////////

in (hi- xi/ii/n/'ir j>/<(tti\

The
t'(jUUti()ll

ot the plane extent mav lie considered the eqiia-

tion of this conic iii plane coordinates.

III. A -- 0, all the first minors are /.em, hut not all the second

minors are /.em. Equations (
!

)
no\v contain only t\vo independent

(((nations and hence the extent contains a pencil of singular planes.

It this pencil is taken as u = d, n
it

", the e(|uatioii of the extent

becomes
A u uf+'2 ^,>

l

l

",^-lj>'- ()
- (7)

where the determinant .1 .(,, -.I,', docs imi \anish liecanse of the

hypothesis that not all tin- second minors of the discriminant ( 1)

vanish.

Equation (7) factors into two distinct linear factors and hence

the plane extent consists of two bundles of planes. The elimina-

tion of n
t
between equations (-) and (7) j^ives

which define the vertices ot the two bundles.

\Ve have, ucconlillj^lv, the result: .1
)il<tin'

i.rftt/t i>f a<'i'n)i,1 l<inn

irilli <i in iif/l "/ ftllli/n!i!>' /'/<///'
x r'///.sv.s'/.v n1 1 ii'n liii/nlli x t />/<///. >. ///

sini/llhll' [a Ili'll In Ill'l til,'
/I,'//'-//

<<>/// ///">/ f" f/li' tll'n I, Ilil, II, 'ft.

IV. A- <, all the first and second minors are /.em. but not all

the third minors are /.ero. Filiations ( :) ) contain oiih one inde-

pendent equation and hence the plane extent contains a bundle of

singular planes. If this bundle is taken as
//,

- d, the equation of

the extent becomes
.(,,".-' 0, (*)

where .! cannot be /em because of the livjxtt hesis that not all

third minors ; if ( 1
)
are /.ero.

Hence we have the result: .1
/</,///,

-.////// r//' xc/-,,//,/ ,-/,/.v.v //}, ,i

I, II, nil,' tit' silli/Hl'tr fi/KIH-X
i-iiHXIttfx nt' t/Hlt fmtl'/li' (/"/./_// //,"/">/.

It mav be noticed that the elimination ot u. betueeii cijiiatioiis

(ll)and (
s

) ^jves the meaningless result
./-,: ./;.:./.:./,

d
:
o

:
o

: i).
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98. Poles and polars. Tin- relation between poles and polars may
be established by means of plane coordinates as well as by point

coordinates. We shall define the pole of a plane >\ with respect to

the extent (1 ). ;i

(

.'~. us the point the coordinates of which are

P->\
=

',,'',+ ',-':. + ',:,'+ -',4'V ('= I- - ;! ' ^)

For the case in which A the relation between pole and polar

is the same as that delined in ^ 0:2, as the student mav easily prove.

In the eases in which A=0 the polar relation is something new.

The following theorems dualistic to those of ;< JH are obvious or

easily proved :

I. //' it
pl/ini' belongs t<> tin 1

i'.rt>-nt it*
}><>/>'

ix tln> limit /mint in thr

plilnt'.

II. T" 'in// plii
n,' nut n i$in<jnlnr pliin,' <>f flu- I'.rfrnf <v,,-/v.

-./<?/</.;
'/

n/>/'ji'
ji/t'.

III. T<> in/// point cnrrfxpi~>nd
>i

nn'/<pii' //"/'//
/I'/n-n '///-/ "///// irJn'n

tli* pliiih
1

f.rfi'/if //'/.*> //" sitti/iilitr pliiiif.

IV. A
I'ol,'

//.'.s- /// itx pnl,
i r pl>i

< n'lit-n it//'/ null/ irln n f/n- fxJi/r

pi,
ini' l'lnn<i* to f//>- ,.rt,'ni.

V. Tin 1

pnlf of <ni if pi i'in i' />i'x l/l nil xi HIJII]/I /
p/ii/i,'x

irln /> xii<-li r.rixt.

VI. It n
pl<

in,' p pnxxi'x thmiii/li th,
1

pnl,' ,,f
,i

pl,nn' i/.
t/i,'//

</ /iitNxrx

tln'oinjh tin 1

/n,/r iif p.

VII. All limit pointx lifiii'j in it
pliin,- p iii-,' tl/,' limit

/m/'/itx
///'

pl<ntt'S

of tin- ,'.it,nt irliii'li pnxx tln-oiii/li tin 1

jinliii' <;('/>.

VIII. /'"/' il xiirfil,;
1

of xi'i'oinl ,-l,ixx fl'l't/inllt xiin/i/liir pliiinx it t'x /mx-

xin/f in ,i_ii intinit,' nunil't'r "f ii-ni/x tn ,-nnxt i-iK-f
x,'lf-pnl,ir tfti'iiln'ilrmiK.

IX. If 'I I'm,' nt lii'X i/l il
pl,l

in'
/i.

ilinl /' illlil x ill', tin' pl,iinx i>t' tin'

<'./// /// irliii'li
jiiix* tli/'nin/li m, ilinl

*/
ix tin'

pi/in,' tlirn/n/li ,// iiml / //>'

pnl,
"t n. tin 'ii p ,linl Y '//''' /"/ ///in/i/i- cull / in/ill, -x / / /' ilinl x.

99. Classification of surfaces of the second class. The previous

sections enable us to write the simplest forms to which the equa-

tion nt a surfaee ot the second class mav be reduced.

I. A - 'I. Since the planes envelop a surface of tvpe I. ^ l'^.

we mav take the results of that section and tind the plane conation

corresjKinding to each tvpe there. Consequently, if no account is

taken of real values the equation of the plane extent mav be

written as
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If the coel]icients in the original f(|iiatiiin are real and the ori^i-

n:il eoiirdinates arr also real, thru, by a real eliangu of eobnlinates,

the equation lakes one or another ot the forms

><
i
+ ', + "f -f f

u
,

"\ + " + "* "4"' ^"

i/
~

-f- 'f

-- "' ""' = "

II. A = 0, but not Jill the tirst minors lire xero. \Ve have already

obtained equation ('>), ^ U7, as a possible ei|iiation in this case.

li no account is taken of reals this equation can be reduced t<i

the form
a

~

-f- ?/.r -f- "
j"

: ".

In the domain of reals there are two types:

1. Planes tangent to a real plane ciirye

n
~

-f- //.f i/
~ = i).

'2. Planes tangent to an imaginary plane ciirye

u~+ ?c+ f/.f= 0.

III. A --
0, all the tirst minors are x.ero but not all the second

minors are /ero. As sho\\n in ^ '.'7. the equation can he reduced

to the single type
n- i- n :,

n

if no account is taken ot reals, and to the following two types in

t he domain of reals :

1 . Two real bund les ot lanes



CHAPTER XIV

TRANSFORMATIONS

100. Collineations. A collineation in spare is a point transforma-

tion expressed by the equations

PJ
'\

=
"i i-

r
.
+ ".-''.+ "1.7':, + "u-'o

We shall eonsidcr only the ease in which the determinant !

a.,.

is not /ero, these beinj^ the Hi>nnini/ulttr eollineations. Then to any

point .i\ corresponds a point ./[,
for the I'i^ht-hand nieinliers of (1)

cannot sininltaneonslv vanish. Also to anv point ./' cori'esponds

a point .r, inven bv the eipiations obtained bv solving (1),

a.r^ .l^ + .l^+.l^ + A^, (-2)

where, as usual, .\
if

.
is the eofactor of a

<k
in the expansion of the

determinant ",,. .

I>v means ot
(

1 ) anv point which lies on a plane with coordi-

nates n
t

is transformed into a point which lies on a plane with

eoordimiU'S /'', where

..,"'. + "..,,":' 4- ",,".,' ( -t
)

The following theorems, similar to those of J^-IO, may be proved
bv the same methods there employed.

/. /!// 'i n'nix/tii/nfii/' 1'nf/iiH'nfi'iii fi"itifx, /ifitttix,
it//'/ xfrrtiijJtt liinn

il/
-

' i I'll lixt nl'lin'fl t/'f'i
^'"////.v, lil'lilifi, illl'l xtl'ill'lllt Itllt'X

I'l'Xpl'I'tH'i'llj
>H

<i ciii -f -" //I itui a ii' /'.

II. 'Tin iioHxiii'jiiliii'
i-"l!iin iif iniix fi>nn it

i//'"iip.

III. It' /',. /'.. /', I\. <tii<l /.' <irt' //'< <i rl'it riirilii nxminn'il
y/o////.v

H<>

juiir ,,t /rlin'li in 111 tin' Kit /in i>liim. iiinl
/,'', /'/, /;', /

(
'', it/n/ I'' n/'i' <(lxi)
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fire arbitrarily aswumed jwintx >i<>/t/r <>f /////'// //< /// tin mini*-
/</<//<,

there t'.r/xtx n>n' iin<l "///// "//c fnHiiit'ittinn /"/ /mint* /'//7//<7/
/,'

in //<//'*-

fnrinul into /;', /._:
////" /:.', /; intn /;', /; //// /;', ////// /; ////.< /'.

IV. A H'lnxini/iditr enUineatin entiil'lix/tex //
/</<;/''/ /'7/// /.,///,// ///,

pntiitx iif f ir<i
1'nrreHfitiHilint/ /<///// "/ tin' jiliimx of tirn

ivj/vvxy/u///////!/

IH'/II-I/K,
uit'l mij! sue/I

fn'iijeefii'i'fi/ nun/ /< fKtitfilix/n-il in tin /'// //////

number <>t' irni/x />// <t nonnhif/nlnf f<>tlin< iitin.

V. An if f/i'ii /'//mix ii'/iii'/t enrrex[ininl /<y //nii/i* "/' '/ H<inxin</n/iii'

enllitu'ittion ni'i
1

[iroji'i-t
t>'tl i/ tr<tm*fi>rnte<l intn <iirlt ////.

101. Types of nonsingular collineations. A cnllincat inn has a

fixed [mint wlicii r[=r, in llic rtjiiiitions (_1 ). ^ l (|l)
. l-'i\c(l jmints

arc tht1re fore <j;ivt'ii liv the ('(uutions

" ./ 4-^ ./ 4- </ ./'4-('' p)./
1

( >.
11 1 t'J 'J |:i ii

'

II ' '
I

Tin 1 necessary and siiflicient conditions tliat these e<jtialions

liave a solution is that p satisties the equation

// p <i n ii

n i u rt ii

</ it o n it
21 -' = I).

n ii il p ii
:;i ;): :;:i r ;i

/ ^/ it il p
ii rj i .; n r

Similar conditions hold for the tixed planes. l>\ reason in'_
r

analogous to that used in 11 \ve may establish ihe results:

/'Jl'l'l'// <'n//l III iff In// //,/N ,7X nl'llll/ tlixttnet //./'I'/ ll/fflll'X '<< fi.l'i'if /"ill/tfi,

ilx ///'///// ncllt'ilx nl fl.i'iil nlitiiex <ix liiii* "> f/.ii</ nniiifx, <in<l ,/N iininii

hunt/leu "/' //./>// f>/iiiii-x
it*

[il'iinx
nt' ti.iiJ /'"'nits.

Ill i'fi /// fl.li'i/ fililin
In ill li-ilxt "in' ti.i'iil fmhlt iiml n>h' //'.// ////.,

tlirnlli/h ir,/-// fl.i'ril ///ii' i/fi,'* ill /,',/*/ i, H,' //.iii/
/il'tli'.

nil i

1'i'i'f/
t'l.liil

lilli' //ex ill It'ilst nil,' //./<</ /'"////, ////-'ill,/// !/',,'// tl.i'ii/
/'"lilt i/n </f /,,/*/

niii' ti.ii'il Inn' t//ii/ ii/ii' fi.ri'i/ ii/iiiii'.

\\'ith the aid of these theorems \\ e ma\ no\\ ela>>it\ thr

col lineal ions, l-'oi- hreyity \\f shall omit much of the details nt t he

\\'oi'k, \vhicli is similar t<> 1 hat of vj II.' In t he l'ollo\yiii'_;' ei|
nations
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tin- letters '/. t>. i: <f represent quantities which are distinct from

each other ami from /.ero.

.1. .I' l>'<t*t /<inr tlixt'nft (isi'il jHihitu n"t in tin- x<nn>'
/>l<nit'. The

four jmints mav le taken as the vertices of the tetrahedron of

reference A !'>'!> (see V\^. '>-. $ SL> ). \\'e have. then, the following

types:

Tvi'K I. P''[= "-'V

p. ''.',= /'./.,,

P '',- ''',-

p.'\= '/A-

The collineation has the isolated lixed points .1. /.'. <
'. J>, and the

isolated fixed planes M'><\ !;<'/>, <'I>A. 1>M'>.

Tvi'K II. p.r\= '/./',.

The collineation has the isolated lixed points .1. /.'. the line of

lixed pnims ('!), the isolated fixed planes .1<'I>, /!<'/>, and the

pencil of lixeil planes with axis AI>.

Tvi'K III. P'\= -rv

.r',- i i.r,,

The rollineation has the two lines of tixi-d points . )//, r/> and

the two jiciicils of tixed planes with the axes .!/.'. ' I>.

TVPK I V.
p./-', "./..

p.r'. '/./',,

p.r'3
=

p.r'.

'

'/./',.

Tin- collineation has the isolated tixcd point .!. the j.lane of

lixed points !'>< I>. the isolated tix.'d plane /!''/>, and the luindle of

lixt-d planes with vertex .!.
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TVIM: \
r

. p.r\ i/./^,

P-'\ ">',-

All juiiiits and planes arc fixed. It is the identical transformation.

/.'. At li'/ixf t/tt'ff i/ixtitii-f //./> </ I'ointu not in tin 1

xiiiiif xtf<ti<//t( tiin <///-/

it" "t/ifru tint in tin' xitiin
1

[iliiin
. 1 lie tixed points inav he taken as the

jpoints .1, /.', />. There are three fixed planes, one of which is .!/.'/>,

and the others must intersect At>I> in one ot the three lixed lines

.I/.', <'!>. I>.\. \\'e mav take one of these planes as I>l'><'(.r =
).

Then in that plane we have a collineatioti in which /.' and l> are

the only fixed points. P>v proper choice of the vertex <
'

\ he coll in ca-

tions in the plane ./ ^ mav he j^'iven the forms found in v; H.

Ileiice lor the space collineat ions we find the following tvpes:

TV IT: VI.
p.i\ tt.r

}
-f ./-,,

p >''
''''.,'

p.r',
---- './.,

p.r,
= tb'

t
.

The collineatioti has the isolated fixed points .1. /.', I) and the

isolated tixed planes .!///>. Al><\ /!<'/>.

TVI'K \'II.
p.r\

=
it.1-^

+ ./'.,.

The collineatioii has an isolated fixed point />. a line of lixi

joints AH. the isolated fixed plane .I/.'/', and the pencil of tixi

I
ilaiies with t he ax is (

'

I >.

TVIM-: \'l II. p,\
-- '(.r -i- ./.,,

p.i'.,
- it./ .

p.r'
,1. .

/'-.; /.'-,.

The collincatioii has the i>olnted fixed point !. the line of fix.
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Tvpe \ III is distinguished e/e< >iiiet ricallv from Type VII l>v llu 1

fad that in T\pe V 1 1 1 the line of fixed [mints intersects tin* axis

of tlic pencil of tixcil planes and in Tvju> \'II this is not the case.

T\ ri: IX. .

The rollim-ation has the jilaiie of fixed points AIll> and the

liiuidle of lixed planes \villi vt-rtt-x 1
'

>.

<
'. .!/ liiittt In'" distinrt fi.ru I

i>nitx <tn<I n<> "tJn'i'x ii"t in tin x<tnt>'

>//-//.//// I'm:'. The lixed points mav lie taken as /.' and l>. 'J'liere

must lie t \\ o distinct lixed planes of \vhii-h one must pass throui^h

J:I> and the other mav. T'here are two siil>ea>es each leading to

t\\ o t \'pes of ei lilineat i> 'iis.

1. It lioth lixed planes pass through HI> thev nia\~ he taken as

./
- (l and ./,

~ ()
. Then in each of these planes we have a eollineatioli

of TV p.-
I V nr TV pe Y of

jj
H . \\\ j'l'oper ehoiee of t he points .1 and

(' we have, aeetirdhi'jlv, the following tvpes of s[>ai-e eollineatioiis :

TV IT. \.

I he ei ilhneat ii ill lias i lie i-

ixed planes .1 /:/>. /:< '/>.

TVIM: XI. o/,

lated fixed points /.'. 7>and the isolated

p.l
- ''.I .

f.i

I '/.I -+- ./' .

Tin- i ollineatioii has the line o| fixed point-, /'/' ami the pencil

: fixed planes ", ixis ///>.

l'. I; onh one of the fixed planes passes through /:/> the other

tixed poims /.' or /'. In this case we may
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take the two fixed planes as .r = and ./., 0. Then in the plane

lieU we have a enllineat inn nf Tvpe I V or Tvpe V nf vj il and

in AT>1> one of Type V I of II. liv pmper choice nl the points

C and A, therefore, \\'e have the following tvpes:

TVPK XII. ?*'(= <'',+ -''.M

The eollineatinn lias the li\rd [mints //, l> and the fixed plan

licit, ADC.

Tvi'K XIII.

The collineat ion has the line of fixed points /.'/> and the pencil

of fixed planes with the axis /)('.

1>. (hi/// unc //./(/ [mint. The tixeil p.nint nia\' lie taken as />.

The fixed plane which must exist niav lie taken as ./ = 0. Then

in that plane the eollineation is of Tvpe \ I, ^-11. and the pnints

'''and /.' niav lie so chosen that the equations take the form nf

Tvpe VI there ^iven. To do this we first select .r - 0, ./ (I as the

fixed line in the plane ./ = 0. The point .1 mav lie taken as an\

jioint outside nf ./ = 0. If A' is the point into \\hich .1 is trans-

formed, the line .1.1' may lie taken as .r - 0. ./-,
". Tins fixes i he

point //. Then C is determined, as in Tvpe \ I, ^-11. The result

is t he folk iwimj; t vpe :

Tvi'K X I \'.
p.r\ (U\ + >'.

P '''!

"

'/./'-_,+
-'' ..

p.r,
- ,u\ (- ./ r

p.r\ '.',.

The aln\e t \ pes exhaust the cases nf a iionsiii'4'ular cnllineation.

In a singular eollineation then- exist exceptional pnints, lines, or

planes. The disciissimi of these is left t- the student.
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EXERCISES

1. ( 'oiiMdering the translation

.'' .' -f- " //'= ,'/ + ?',
'-' = '- + ''

as a eollineation, determine its fixed points and the type to which it

2. Considering the rotation

as a collineation, determine its fixed points and the tvpe to which it

3. Couriering the screw motion

a-< a eollineation. determine its fixed points and the tvpe to which it

belongs.

4. Set up the formulas for the singular eollineation known as
"

painter's perspective," by which any point /' is transformed into that

point of a fixed plane //
in which the line through /'and a fixed point < >

meets
//.

5. Find all possible types of nonsingular collineations.

102. Correlations. A correlation of point and plane in space is

defined by the (-([nations

P"\
~

"n-'"i + ",-''_'+ '',:/''; + ".i-'V ( / = 1, 2, 3, 4
) ( 1 )

where //
(

are plane coordinates and ./ arc point coordinates. The

correlation is nonsingular when n
ik
~

'. and we shall collider only

such correlations. Then anv point./; i^ transformed into a definite

plane //. and anv plane /'' is the transformed element of a definite

point. MI that the correspondence of an clement and its transformed

element is oiie-to-oiie. Tlie points ./
_

which lie on a plane \\ith

coordinates
//_

are transformed into plane.-,
n' \\-liich pass through a

point ./'. where
PJ

t

- Jn"l+ ',-".+ ',,;".:+ - 1 ,,";- ' - '

where ./.
;

is tin- cofactor of ./
. in tin- detci'ininant i

t

. \\'e mav

sav. tlierelore, that the plane n
i

i> ti'anstornieil into the jiomt ./','.

1'oints \\-liieli lie on a line / are traiisformrd into planes through a

line /'. >o that we mav sav that the line I is transformed into the

line /'.
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If tin- pi tint /'(./-, ) is transformed into the plane y>'(
// ). then, h\ the

same operation, the plane y' is transformed into the point /'(.', ),

where, from ( '1 ).

Thr hist equal ions solved for //' c;ive

P"'
'-

"l,'''[' ^ '',,.''' + '';;,''' + "
4 , -''I'-

'1 he points ./ and ./' are in general distinct. '1 hat thev sh

coincide it is necessar\' and sullicient. as is seen bv eomparison
of

(
1

) and ( I ). that

(
":ll ^",; )

-'',
+ (

";:, /
3
",, >''..+ <

":;:;

-
/
3"

;;;1
) '':;+ <

".;,

~
P" ,.,'''

(
'/ p<i )./ -f (

'' -
P'' ).' + (

'' P'i )'' + (
'' P'' ).''

41 i II
'

1 I-J ' U4 ' a
'

!:! ' ;M/'a ' '

14 ' 41'

\\'hei'c p must satisfy the condition

il nil ii nil it nil // - Oil
11 r n ;j r -i ,|;; r ;n -11 r ii

in order that equations (
~>

) mav ha\c a solution.

\\ hen the coi'irdinales of a point /' satisfy eipiat iou> ( .> ). it and

the plane //. into which ii is transformed, form a double pair ot the

convlat ion. Since (

'

)
is of the fourt h decree we see that in general

a correlation has lour double pairs, but mav have more.

'I he double pairs mav be made the basis ot a classification ot

correlations, as was done in the case ot the plane, but \\ c \\ill not

take the >pace to do so. ( >l special hit civM is the ease in \\ hieh each

point n| >paee is a point of a double pair. Kr this n i> necessary

and sulticieiit that equations (.)) .should be satislicd tor all values

ot ./. 'I Ins ean happen in only two cases;

1. p 1. -',
.1

(
. -. p 1. <t ". '..

In the first ease the correlation U evideiith a [iolarii\
\\ith

respect to the collie V, /.././. d. and b\ projier choice of coiirdi-

nates it may be represented b\ the c(|iiatioiis



24S THKEE-IJIMEXSIOXAL (iEOMETKV

In the second case the correlation has the form

on' it ./ -4- <t ./ + a >r
1 i-j 2

'

l;;' ;i
'

n" 4'

P"*=
-
'Vi -";/: -'W

and represents a mill xtjxtfin, which will he discussed later. It will

be shown that bv choice of axes the correlation may be reduced

to the standard form

P>'=-> 3.

Another (jiiestion of interest is to determine the condition under

which a point /' lies in the plane //. into which it is transformed.

From equations ( 1
) it follows at once that the coordinates of P

must satisfy the equation

V,r,.r,r,= 0.

This equation is satisfied identically only in the case of the null

system : otherwise it determines a quadric surface
K^, the locus of

the points /' which lie in their respective transformed planes.

Similarly, the planes f>
which pass through their respective trans-

formed points envelop the quadric A",,

which is in general distinct from A'
f

EXERCISES

1. 1'rove that if /' and
//' are a dmilile pair the plane j>'

is the polar

plane "[ /' with ropeet to the collie l\
^

'2. I'rnve ihat a correlation is an involutorv transformation onlv in

tin- ease of a i.olarilv or a null system.
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103. The projective and the metrical groups. The prodm -t of

two nonsingular collineations or <( two nonsingular correlations

is ii nonsingular eollineation. 1 lence the totality of all collineations

and correlations form a group, since this totality contains the

identical substitution. 1'rojccti^e geometry may be detined as that

geometry which is concerned with the properties of figures which

are invariant under the projcctive group. In this geometry the

plane at infinity has no unique property distinct from those of

other planes nor is the imaginary circle at intinitv essentially

different from any other conic, and all questions of measurement

disappear. Quadric surfaces are distinguished only by the presence

and nature of their singular points.

Subgroups exist in great abundance in the group of projections.

For example, the collineat ions taken without the correlations form

a subgroup, but the correlations alone form no group. All eolline-

ations with the same fixed points obviously form a subgroup.

Again, all collineations which leave a given quadric surface inva-

riant form a subgroup. Of great importance among these latter

is the group which leaves the imaginary circle at infinity invariant.

This is the Metrical
</ruii]t,

which leaves angles invariant and multi-

plies all distances by the same constant.

The general form of a transformation of the metrical group is

>'- A-+//M +"'+ >

8

f

(1)

pt'
=

t'.

where the coefficients satisfy the conditions

/ in -f- / ///
_
-f- /..///..

= /// // -f- in ii -f- ///.,//
-~ // / -f- n J :

-{- n J r- o. (
:5

)

It is easy to see that the distance between two transformed

points is by this transformation / times the distance between the

original points, where /.-" is the common \alue of the expressions

in {-), and, con\'ers(d\', that a eollineation which multiplies all

distances by the same constant is of the form (1 ). I he preser-

vation of angles follows from elementary theorems on similar

triangles.



2-iO THKEE-WMEXSIOXAL GEOMETRY

All iranst'ormations of the metrical group which leave a plane/'

lixed form a group of collineations in that plane by which the

circular [mints at infinity are invariant. This group is therefore

the nictrical group in
/>,

and the protective definitions of angle

and ilistanee given in f)U stand.

EXERCISES

1. If /Ms the determinant of the coefficients /,///,// in (1), show that

l> = /''

3
.

'2. Show that the necessary and sutlicicnt condition that (1) should

rejireseiit a mechanical motion is that. 1> = -\- 1. and that it should repre-

sent a motion combined with a reflection on any plane is that I) = 1.

3. Show that if I> = 1 in addition to conditions ( L') and (.'>), we have

/i" + //'i' + i

= l-< + in'- + "j
1 = /

:f + "':f ~f" ";i
J

1-

//- + "<l"'-; + "l"o
= /./

;j
-f '"./"';,

+
".^'.j

=
A/; + "'./", 4- "./^

= 0.

104. Projective geometry on a. quadric surface. It has already

been noted (^ b'U) that the geonietry on a surface of second order

with the use of (jiiadriplanar coordinates is dualistic to the geom-

etry on the plane witli the use 1 of tetracyclical coordinates. For in

each case we have a point defined by the ratios of four quantities

./ , r , .r. , ./ , bound bv a quadratic relation

a) (./)=(), (1)

which is, on the one hand, the equation of the quadric surface

and. on the other hand, the fundamental relation connecting the

tetracvclical coordinates.

Anv point / on the quadric surface inav be taken as correspond-

ing to the point at infinity on the plane, since the point at inlinity

is in no way special in the analysis. Any linear equation

V'V,^0 i'2)

represents a plane section of the surface or a circle on the plane.

Should the section pass through /, the circle on the plane becomes

a straight line, but circles and straight lines have no analytic

distinction in this geometry.

If
//,

is a point on the qnadrie surface and we have, in ( - ),
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the plane ('2) is tangent to the surface, and the circle on tin- plant-

is a point circle. The point ot tangencv on the snrtace corresponds

to the center of the point circle on the plane. The intersection of

the tangent plane with the quadric surface consists of two gen-

erators. In a corresponding manner the point circle on the plane

consists of two one-dimensional extents. Neither alone, however,

can he represented by a linear equation in
./-,

and therefore they

are not straight lines on the plane. If this is olisciire it i> to be

remembered that imaginary Mraight lines are not defined liv any

geometric property, hut by an analytic equation.

The intersection with the quadric surface of the tangent plane

at / corresponds to the locus at infinity on the plane.i

The center
//.

of a point circle on the plane, or the point of tan-

gencv of a tangent plane to the surface, is found by solving ( '}
>

for
// (

. The values of
//.

must satisfy (1 ). and the substitution

gives the equation ?(//)=<), ( 1,

which is the condition that a circle on the plane with tet racydical

coordinates should be a point circle, or that a plane in spare should

be tangent to the point circle. It is in fact simply the equation in

plane coordinates of the quadric surface (1 ).

Two circles on the plane are perpendicular when

:

,;,^
I ll

In space the pole of the plane V/r.r
t

.= with respect to the sur-

the condition that this pole lie in the plane
N /v /^

0. lleiice two

orthogonal circles on the plane with tetraevdieal cooi'dinates cor-

respond to two plane sections of the quadric surface >udi thai

each plane contains the pole of the other.

A lineai' substitution of the tetraevelical coordinates corresponds

to a col lineal ion in space which leaves the quadric surface invariant.

'I he geometry of inversion on the plane is therefore duali-tic to the

geometry on the quadric surface \\hidi i> in\anant with respect to

colliiieations which leave the surface unchanged. T\\o points mi

the plane \\hich are inverse \\ith respcd to a circle <

coi-respolid

to two points on the quadric surface >uch (hat an\ plane through



252 THKKK DIMENSIONAL (JKOMKTRY

them passes through the pole of the plane corresponding to C or,

in other words, such that the line connecting them passes through

the pole of the plane corresponding to ('. Since the center of a

circle on the plane is the inverse of the point at infinity with

respect to that circle, the point on the quadric which corresponds

to the center of a circle may be found by connecting the point /

with the pole of the plane corresponding to the circle.

An inversion with respect to a circle corresponds in space to a

collineation which transforms each point into its inverse with

respect to a fixed plane. That is, if the fixed circle corresponds to

the intersection of the quadric with a plane .)/, and K is the pole

of M. an inversion with respect to M transforms any point /,'
on

the quadric into the point /.?, where the line KI[ again meets the

quadric. The collineation which carries out this transformation

has the plane M as a plane of fixed points and the point K as a

point of fixed planes.

Consider now the parameters (X, /j.) on the surface, defined as in

9t>. They may he taken as the coordinates of a point on the sur-

face 1 and may be interpreted dualistically to the special coordinates

of vj 70. The two families of generators are then dualistic to the two

s\'stems of special lines of ^ 70, and the locus at intinitv on the plane

is dualistic to the generators through the point / of the surface.

The bilinear equation

f/jX/i + ,i
a
\ + a

tn + n^
= (6)

represents a plane section of the quadric surface and is dualistic

to the equilateral hyperbola on the plain
1 with two special lines as

asymptotes. A section of the quadric surface through /corresponds
to an ordinary line on the plane, from which it is evident that by
the use of the special coordinates the straight line has the properties

of the equilateral livperbola.

Any collineation of space which leaves the quadric surface inva-

riant gives a linear transformation of X and of
fj..

This is evident

from the fact that the collineation must transform the lines of the

surface into themselves in a one-to-one manner. It mav also be

proved analvticallv from the relations of (

.H;.

Conversely, anv linear substitution of X and
/j. corresponds to a

collineation which leaves the quadric invariant.
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Consider in fact tin- substitution

rtV-f/3*= >r, *' /*
=

/*' (")
7 A + 6

which l(>ii\'t'S tin' generators of the second family fixed and trans-

forms the crfiierators of the tirst faniilv. From ( { ). $ '.Mi, it is ea>\

to compute that this is equivalent to the collincat ion

pj\ ((i + 8
).r( + i( 8 )./', + ( 7 ?} )./',

-
/( tf + 7 )

j'
4

,

p.r,
= i(ft + 8 )./; + (a +8 )./'. 4- ' ( tf + 7 )'' -f (

-
tf + 7 ).'"

4
',

, , ,

"

^ - c- ;
(
S

)

p.r,
=

( 7 )./-,
? ( p -f- 7 )./, 4- ( 'i -f o

).'',;
4- / (

- n + 6 )./ r

p./-4
-- /( tf -f 7 )./'! + (fi y ).r',+ i(n - 6 )/. -f ( a 4- ^

)./>

Similar results can be obtained for the trunsfornuitioii

, //>/u'-f /'

X = X', /z
-

,
( '. )

/'/* + 7

by which the o-eiieratnrs of the first family ai'e fixed, and for the

product of
(
7 ) and ( l> ).

Filially, the collineation corresponding to the transformation

ap'+0 m\'+nX=
,

-> /*==- (10)
7/A +6 ^X + Y

bv \vbieli generators of the t\vo families are interchanged, is easily

computed.
EXERCISES

1. Show that if the quadrir (1}.
(

.<i. is the sphere ./
i
4- y--r :.'-= 1.

the t raiisforiuation A. = >
" :

'\', fj,
= <

' <:

'fj.' rejirociits a rotat ion of t he sphere

aliout the axis '/. through an an^le c/>.

2. Show that the traiisi'onnatioii A- /^'. p-
= A' replaces each

point of the sphere of Kx. 1 by its diametrically opposite point.

3. (ilitain a transformation of A. /i
which represents a general rota-

tion of the sphere in Kx. 1 about anv axis thi'oii^li its center.

105. Projective measurement. The definition of projectiye meas-

urement, giyen in ^ 47 for the plane, can evidently be geiierali/ed f. \\-

space, and only a concise statement of essentials is necessary here.

Let (0( .r) = ( 1 )

be the equation of any ipiadric surface taken a> the fundamental

(piadric for the measurement, and let
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If .1 and /> are any two points and 7'
t

and 7', are the points in

which the line . 1 1> meets the i|iiadric, then the distance I> between

A and /.' is defined by the equation

/>-= Alog( .I/.'. 7',7'J:

or if >i and .: are the coordinates of J and />' respect ivelv,

(o ( //. .:' ) -f- \ r <w ( if, ? ) \

~
-

r fo ( '/ ) i [
(t) <

~
) i

/>- A log /;})
ft> ( //.

2 ) \ [ft) ( //.
z ) J" [(o ( // )

] [(o ( :
) J

Also, if <t and /< are two planes and ^ and /, are the two tan-

LTent planes to the (piadric through the intersection of a and />, the

angle $ between << and /< is delined bv the equation

wln're
>/,

and r
(

are the coordinates of // and f>

rcspeetivelv.

Two planes are perpendicular if each passes through the p

the other: for. in ( 4 ), if O ( it. r
) 0. then

cf>
)
log ( 1

)
_- + HTT.

A line is porpeiidic'iilar to a plane />
if everv plane through the

line is perpendicular to
/>

: that is, if the line passes through the

pole ot
/'.

\Ve mav define the an^le between two lines in the same plane

as the angle between the two planes through the lines and perpen-

dicular to the plane ot the lines. That is the same as dclining the

rat io of the two lines and the two tangent lines drawn in t heir plane

to t he i

jiiadric surface.

Anv plane cuts the ijuadric surface in a conic, and the definition

of an^le and distance is the same as in the proactive measurement

ot ^17. in which this conic is the fundamental one. 1'rojeetive

plane measurement is therefore obtained bv a plane section of

jil'o]eet IVe -pace measurement.

A - m Chapter \ II we have three cases:

1. '!'!>'
/////<.

//..,//, i;i a,-. The fundamental ijiiadrie is real, and we

consider onlv the space inside of it. The -_;vi iiiiet rv in the plane is

t he same as in ^ I
s

.
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II. 7V/' <///////< i-iixi-. Tin- fundamental cjtiadrie is ima^inarv.

The LTeometrv in the plain- is tin- same as in 4'.*.

III. '/'//' jut
/-iil'i'l ! fiixi-. I In- t nndanient al tjiiadrie in plane coor-

dinates mav lie taken as

"I'-f- "':' +
-,

- ".

which is that nf a plain- extent consist iic_
r of planes tangent to a

cniiic in the plane j-
-

. If this conic is the circle at intinitv. the

measurement becomes Kndidean.

If the cniiic is a real circle at intinitv. for example the circle

>
-

\
'

( .' ./ r + ( // // )" ( z z )\

and the alible bet\\'een the t\\'o planes

,u- 4. I,,/
4- ,- r -i- ,lt I) and (/'./ + l-'/i

-1- <':: 4- /'/ = "

Tlirough anv point in space LT<CS a real cone, such that the dis-

tances from its vertex to points inside it are imaginary, distances

from its vertex to points oin>ide it are real, and distances from its

vertex to points on it are /.em. Anv plane section thnm^h the

vertex is divided into regions with the properties described in vj .'(.

106. Clifford parallels. \Vhen a system of pmjective measure-

ment has been established, the concept of parallel lines max be

ii it rod i iced b\- adopt in^ >oine jiropeii \ of parallel line-- in Kuelidean

j;eometrv as a definition. IVrhaps the most ob\ imis as \\ell as the

most common deiinitioii is that parallel lines are those which in-

tersect at intinitv. \\\ this deiinitioii. in [larabolie space one and

onlv one line can be drawn through a point parallel to a LMVCII line,

in hvperbolie space tv/o such parallels can be diawn, and in elliptic

space no I'eal parallel can be drawn.

In elliptic space, however, there exist certain real lines called

( '//tl",-il
/"'/<///<

/x which ha ve other properties of parallel lines as they

exi>t in Knclideaii space. \Ve \\ill proceed to discuss these lines.

\\ e ha\'e seen that anv linear transformation of the parameters
X ami u which define a point on a i|iiadric >nrt'ace correspond to
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;i eollineation which leaves tlu i

quadric invariant. Among tliese

transformations arc those of the type

X = -
, u = /x , (1)

y\'+B

wliieli transform the generators of the first family among themselves

lint leave each generator of the second family unchanged.

For reasons to he given later we call such a transformation a

fr'i/iti/'iti"ii "f t/n' tirxf kin<1.

Similarly, the transformation

, N/ nifi'+n ,
X = X, n = -, (2)

]>t* + y

hv which the generators of the second family are transformed lint

each of the first family is left unchanged, is called a translation of

f/if iH'cnnd kntil.

Consider a translation of the first kind. On the fundamental

quadric any generator of the second family is left unchanged as a

whole, hut its individual points are transformed, except two fixed

points, for which
rtX-f/3

X = - - -
(d)

7 A. + 6

This equation defines two generators of the first kind, all of

whose points are fixed. Hence, /// <t translation <>f t/ie first kind (Jn-rr

itri', in i/i'tiiTtil, t>r<> <j<'nt'r<tt<n'x <>f tin' frrxt kin<l ir/ii<'/i tire fu'>'<l j>t>int

l>ii />"/'/!/.
\Vc say "in general" hccause it is possible that the two

n nits of (
'}

) may be equal.

Call the two fixed generators;/ and /i. Then any line which in-

tersects // and h is fixed, since two of its points are fixed. Also

through any point /' in space one and only one line can be drawn

intersecting _//
and //. Therefore, ti/ii/ />/>i/if

I' is tran ftformed into

illf'tlnT jmiiit "II t/ii' I!Hi' /r/i/'r/i
y/f/.v,y,

>
f/irnH'/Jl /' dllif inti'MCf'tS </ ilU<l It.

Since we are dealing with a ease of elliptic measurement the lines

//
and // arc imaginary. Then, if a real point /' is transformed into

another real point, the roots of (
:

) must be conjugate imaginary,

since a real line intersects an imaginary quadric whose equation has

real i -oc t tii -it -i n s in con jugate imaginary point s corresponding to con-

jngate imaginary values of X and p.. Therefore, if ii tranxlation <*J
///'

///">/ /'//// ff(l)IKf'nr//IK l''-'ll
]>'>intx

illtu fi'ilf
fin/'/ifK,

f//i I'*' iilllxt In' tll'n iJlX-

ti/n-t (j.i'1'i/ tff'n<'ra(ori< f'>/-/-,
ni><>n<lin<i

f" I'ni) iui/iit,' in\injinarif valum ol X.
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This mav also be established by equations (
S

), s 1<>4. That the>e

may represent ;i real substitution 8 must In- conjugate imaginary in

cr, and 7 conjugate imaginary to /^. NVe therefore place a = </ 4- //.

B il if, ft / + /''. 7 = /'
-f- /<', and have

, , , '

p.r.
= -

A./', 4- iu:, + '/./;.. + f./-
4 ,

PV -".'-,'- ^ - ''' + '/.';.

With these values of n. rf, 7, and 6 the mnts nf ( :!
) arc con jugate

imaginary.

To lind I he projective distance bctu'een a point ./,
and its trans-

formed point ./', \\'e use equations ( 4 ) and substitute in (''>). $ !<.">,

placing I\ - There results

r/ + /\ t + ,-+ r- ,/

I) = lt>g-
= cos -i

- (/ / N //--f //-+ <' \ lf+ /---f- r---f- ,/-

\vhich is a constant. Hence, /<//
// trtnixfiftittn <>/ tin- ilrat ////</ 'i/-7/

Jutint nf
i<l>H,'i'

/X Hlrt'<? tln'nUijh it fiinxt'lllt llfijt'Ctil'l' i/ixtil/lff "/I f/i>

struii/Jtt littf ir/iifJi
j>tif<n,'x tJirniiifh tin'

[><>int
<tn<l ///--Vx ///, ///// //./-/

ili'n*'t'<tt<n'x <>n tin- fundiinn'ntnl umtdric.

Ii is this jropcrtv which gives to the transformation the name

"translation" and to the lines which intersect the l\vo ti\ed gen-

erators the name "parallels." l>v the transformation ihe points of

space are moved along the Clifford parallels in a manner analo-

gous to that in which points are moved alon<_>- Kudidean parallels

bv a I^uclidean translation.

In the pi'o ject i\c space a dualistic pi'ojiertv exists. Since the

Clifford parallels ai'e fixed, anv plane through one ol them is irans-

formed into another plane through it. Now anv plane contain^ one

Clifford parallel, since it intersects each nf the tixed generators in

one point. It //
(

and //' are the oi'i (

_;'inal and the transformed plane

respectively, the an^le between them is, bv
(
4 ). s 1 (| ",
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Hence, }!/ '/ translation <>f the first kind I'/tfJi
j>t<tnt' <>f ttpmr As- turned

<ili)it fix' ('lirt'ord
}><ir<itl'/

in it throw/ft <i <'<>nxt<int nn</t<' tt'hic/i in e^ual

t<> t/ii' dixtttHi't' t//r<i;//i ii'tiirfi jinhttx
i

if the
x/xti'c <tr>' ir<'d.

Similar theorems hold for translations of the second kind. The

two kinds of translations differ, however, in the sense in which the

turning of the planes takes place.

I)V a translation of the second kind Clifford parallels of the iirst

kind are transformed into themselves. For l>y the translation of

the second kind all generators of the iirst kind are fixed, and conse-

quently any line intersecting two such generators is transformed into

a line intersecting the same two generators. Hence dm Clifford

fHtrallt'lx
iD'i' t'rcri/irJn'rc- fijitidintant if the distance ix measured on

Clifford i>ar<t/lclx <>f tin- nt/,.-r kind.

Let Ll\ and J/.Y be two Clifford parallels of the first kind, //

and // the two tixed generators which determine the parallels, and

I'(
t
) any line intersecting both Ll\ and J/.Y. The line /'(,> intersects

two generators //'
and //' of the second kind and is therefore one

of a set of Clifford parallels of the second kind. Therefore there

exists a transformation of the second kind by which l'(
t
) is fixed

and l.I\ is transformed into J/A', /' falling on (
t
>. Hence the

angles under which /'',> cuts Ll\ and J/.Y are equal, of course in

the project ive sense. That is, if <i l/'/it- citf* t/r<>
<_'/i_tt'r</ puralli'h,

f/if 1'nrri'npnndinij angles <(/<
>'<[\ml.

In particular the line may be so drawn as to make the angle

/./'(,> a right angle. For if (J is on J/.Y. the point (
t
> and the line

L K determine a plane ji,
and in this plane a perpendicular can be

drawn from (
t

) to LK. To do this it is onlv necessarv to connect
(,)

with the point in which the plane /'
is met bv the 1'cciprocal polar

of I.l\ with I'espect to the (piadric surface.

Ildice. /'/'///> iinif p</int in "in 1 nl'f/rn ('/itj'n/'d fi<n'ii//i-/x
<i fnnirnnH

i/i'r/
'ndi<-iil<ir I'ltn In- ilrnirn in ///, tim, and f/n' >>i>rtini> <>f t/tr fn'riirn-

il/nilii/- ini'llldi'd Iff n-fi'ii tin- tiru
j><trn//i'/x

ix of ru/ixfi/t/f lt'</f//.

107. Contact transformations. A transformation in space, expres-

>ible bv means of analytic relations between the coordinates of

point-, mav be of three kinds according as points are transformed

into points, surfaces, or curves respectively. \Ye shall lind it con-

venient to employ ('artesian coordinates in discussing these trans-

formations ;md to introduce the concept of a plane element.
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Let (.>: //. 2) be a point in spurt- and let /, z
/< ( A' j-

) + y ( } // )

he ;i plane through it. Then tin- live variables ( ./, //.
:. /, //>

define

;i
j>lniti' i/i'/mnf, which niiiv be visuali/.ed as an infinitesimal portion

of a plane surrounding a point. In fact, not the magnitude of tin-

plane but simply its orientation conies into question, just as, in

fixing a point, position and not magnitude is considered. If anv

one of the live elements is complex, then the plane element is

siniplv a name for the set of variables (>, //. r. y, y ).

Since the live variables are independent, there are s^' plane ele-

ments in space. Of chief interest, however, are two-dimensional

extents of plane elements. Such an extent we shall denote bv J7,

and shall consider three types:

1. Let the points of the plane elements be taken in the surface

2 /'(.r, // ) and let
]>

and y be determined bv the equations

/> '/
"' More generally, let ./, //. and .r be defined as

CJ- (I/

functions of two variables u and r, and let
j>

and y be determined

bv the equation
dz-piU + tnly (1)

for all differentials <lt( and *//. Then

whence
y<
and y are also determined as functions of /' and '.

In either definition the J/., consists of the plane elements

formed b\- the points of a surface and the tangent planes at

those points.

l!. Let the points of the plane elements be taken as functions

of a single variable n and let /> and </
be a^ain determined hvO i I -

equation (1). where one of the t \\ o (sav /-')
i- arbitrary and the

other ( sav y) is thus determined in terms of
y.

and //. The .!/

then consists of the point- of a curve and the tangent plane- to

the curve at those point-. The point- themselves torni a one-

dimensional extent, and throiigli cadi jmint <_TOC> a ,,]ic-dinieiisional

extent of plane- : nanieh . t he pencil of plane- i hroii^h 1 he tangent

line t< i the ciir\ e.
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:'.. Let (./',//, -") be ;i tixcd point and let
/<
and 7 be arbitrary and

independent. I lie .I/ then consists of a point with tlie bundle of

planes through it. In this ease, also, equation ( 1
)

is true, since

/./-. <///.
and >lz are all /.ero.

It i> clear that the .l/.,'s deiined above do not exhaust all pos-

sible types cif two-dimensional extents of plane elements. For

example, we mi^ht take the points as points on a surface and the

planes as uniquely determined at each point but not tangent to

the -urfaee: and other examples will occur to the student. The

above-mentioned types exhaust all cases, however, for which equa-

tion ( 1 ) is true, as the student may yerify. We shall say that a set

of plane elements satisfying (1 ) form a union of elements.

Two .)/ ,'s are said to be in contact when they ha\'e a plane

element in common. From this definition two surfaces, or a curve

and a surface, are in contact when they are tangent in the ordi-

nary sense, a point is in contact with a surface or a curve when

it lies on the surface or the curve, two curves are in contact when

they intersect, and two points are in contact when they coincide.

A contact transformation is a transformation by which two M 's

in contact are transformed into two J/".,'s in contact. There are

thiee types of such transformations, which we shall proceed to

discuss in the following sections.

108. Point-point transformations. This transformation is deiined

by three equations of the form

O)

or, mure generally, /'
l

(./. //. :. ./ '.
//',

z' ) ".

/'(./. //. :. ./'.
//'.

.:'
) u, (-1)

/' ( .'. //. z, /.
//'. .;' ) I),

u here we make the hypothesis that equations (1 ) can be solved

for ./.
:i,

2 and equations cl\ \r ./.
_//.

.: and ./-', //', z'. and that all

hint-linns arc cunt mumis and may be differentiated. \\ itlnn a prop-

erly restricted region the n-latinns liet \ycen ./. //.
^ and ./'', //',

z' are

"!! to one, a piiint Lr" (> > i"'" ;l point, a surface into a surface,

and ,i
< u : \ . mt < < a >

, \ <.
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A direction </./ :
'///

: /: is t ransformed into a direction </./':
<///': </.:',

where / , /

I /
' '

'

;
'"''

;
' '

'

j

/./' ,/./' + ,/// + -r/2,'

7 '
'

dy -

( ./' i
I/ ( Z

From this it follows that two tangent surfaces are transformed

into tangent surfaces. More specifically, the relation

which defines a union of line elements, i> transformed into

cz' f z' i z' (2
dz' -+/' +<r

c.r cz (i/ cz

.* t .* ' .< > .

+ /'
- + v =0.

1
'

(if c

( ./' cz (>/ cz

If now we define
ft'

and
//'

so that this relation is

a union of plane elements ( ./.
//, ,r, /, </

) is transformed into a union

of plane elements (./', //', .z', //, >/' ). l-'rom equations (
> ) and (>),

p'=t\(j\ .'/ z, /'- '/>

'/'=./'. (./'. //. ,r, /-. 7 ).

These e(|uations adjoined to (1 ) form, together \\ith (1). the

t'nldt'i/i'il fiiimt tritnxfi.ifiHittitin*.

A collineation is an example of a point trunsi'ormation. Another

example of importance is the transformation l>v I'eciprocal radius.

or invfi'sion with I'cspeet to a sphere. If the sphere has its center

at the oriin and radius //, the transformation is
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EXERCISE

IMscuss the properties of the inversion with respect to a sphere,

espeeiallv with reference to singular points and lines.

109. Point-surface transformations. Such a transformation is

defined by the equation

/(.,; //, z, .1'.
//', z')=0, (1)

\\itli the usual hypotheses of continuity and differentiability of/
An example is a correlation since it may be expressed by the single

equation

C'V'+ "l3#+ "l/ ^ "ll )'''+< ",!''' +",,// + ",/ +",,)//

-f- (
ii ..''-(- '/,//-)-''.,. .? -f- ''. ) - 4~ '' '' + '' ,y + ''.,- 4~ '' = 0.

l>y eijuation (
1 ), if

( .r, //,
^ ) is tixed, ( ./', //'.

z
)
lies on a surface ///',

and we say a point /' is transformed into a surface >//. If /''(./',//', z' )

is tixed, the point ( ./, if. z'~) describes a sui'face ///, where the surfaces

///' and m are not necessarily of the same character. It /'' is on ///' it is

ob\ ions that in contains /'. In other words, if /' describes a surface

///. the corresponding surface, in', continues to pass through I'
1

. \Ye

say, therefore, that the surface m is transformed into a point /''.

If /'describes any surface N (differing from an /// surface), the

sui'face in' will in general envelop a surface .s", the transformed

surface of S. Analytically, from the general theory of envelopes, if

the equation of ,s' is _. _ .,
. >

and
{>

i

iy
= > the t

j

quation of S' is found bv eliminating .r, i/,

ex <
if

and z from (1) and ('!) and the two equations

-+/'- =
< (3)

(4)

Furthermore, the tangent plane to .s
1 '

at anv point is the same as

the tangent plane to ///' at that point, and hence, if we use // and 'j'
to

lix that plane, we have

(O)
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\\ e now have live equations, namelv ( 1 ), (
; > ). ( 4 ), ( "> ), and ( ti ).

establishing a relation bet ween a plane element ( j; //, ~,
//, 7) and

a plane element (./'. //. ',/>', 7'). These equations niav le solved

to obtain the form
./ =

(^(.r, y. 2,
/>. 7),

z= <t>.(.r, //. ,?. y. 7),

//-(/>,(./-, //,
?.

/*. 7),

</- 0.(./'. //,
~. y. 7).

which form the enlarged puint-surfai-u eontac-t transformation.

EXERCISES

1. Studv the ti'ansfornuition detined l>v the e(|iiatiou

.<- -f .//- + :.'
2 -

(SJT* + ;/;/' + :.:.') = 0.

2. Study the transformation detined hy the equation

(x j-'r + (// //')- + (:: ,-.')- = </-.

110. Point-curve transformations. (\nsider a transformation

defined bv the t\Vo L'qiUltiollS

/',(./'. if. z. /. if, z )= (),

(1)
./.,(./'. //, ,?, ./'.

//'. ,?')= 0.

If a [>oint /'('' //
-i' ) is lixed, the locus of /''(./', //', ,:'') is a

cnr\e /r' detined b\ iMjiuitions (1 ). Similarly, if /'' is fixed, the

locus of /' is a curve /.'. Ileiiee the transformation ehanu'es points

into ciii'ves.

If /' describes a curve ('. the ciir\c /' takes ~s_

l

positions and in

^eiiei'al generates a surface. The s^ curves /' ma\. ho\\c\fi'. ha\ e

an envelope C\ which is then the transformed curve of ( '. Or,

linallv. if (' is a curve /. the corresponding curves /
'

pa>s throii!_;h

a point /''. \\hich we have seen to correspond to /.

If the point /' describes a surface .V, the corresponding curves //

forma two-paranu-ter family ot curves. The envelope of the familv

is a surface ,s'' \\hich corresponds to N.

To work anahlicallv let us foi'in from ( 1 the ctiuation
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With (y'. //',
z' ) fixed. ( -) represents a pencil of surfaces through

a A'-curve, and the tangent plant
1 to any one of these surfaces at a

point on the /--curve has a
/>
and a 7 given hy the equations

C f C f Cf ( f
i + \ :-a

~J + \ i i

f* C
J_

C
J_ ,ON

/'
= r' (J

=
: r' (")

df cf ct
N cf

i + X '-5
'

' + X - -J

cz cz cz cz

There is therefore tluis defined a pencil of plane elements through

a point 1' and tangent to a A--curve through that point.

Similarly, with (r, //, z) tixed, equation ( '2
) defines a pencil of

surfaces through a /"'-curve, and a corresponding pencil of plane

elements is defined by (r', //',
z' ) and

c.r

ct r/^,+X--
C2 C^'

From ( _}
) and (4) it is easy to compute that dzpdf qdy is

transformed into dz' p'dx
1

q'dy' except for a factor. So that if

(./, //,
z,

/i, (/)
is transformed into

(./', //', z', j>\ >f ) by means of ( 1 ),

( o ), and (4), a union of plane elements is transformed into a

union ol plane elements.

From the six equations (1), (o), (4) we may eliminate X and

obtain live equations which may be reduced to the form

</'=/,(>'< /A ?< /'. '/)'

2' = /(/-, /A .*, /', 7),

/>'=/4(A //, ', y*. 7),

'/' =./'.(./', //,
2,

//. 7),

which define the enlarged point-curve contact transformation

derived from ( 1 ).

Consider a fixed point /'(</. f>. <) with the J7, of plane elements

through it. Equations (1 ) dcline a /r'-curve. and we may consider

them solved tor z and
//'

in terms of ./'. In (:)) />
and 7 mav be

taken arliitrarily. Then, if the values of.?' and
//'

in terms of jr' are

substituted in (}). both X and j-' mav be determined. Finally,
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p' and
if'

are determined from (4). This shows that a definite

plane element through /' is triinsfonned into a definite jilane ele-

int-nt of a /.'-curve. The M through /' is therefore transformed

into a .!/., along /'.

A pencil ol plane elements through /' will in general be trans-

formed into un .)/ ot plane elements lonnin^ a strip along //, but

if the axis of the pencil through /' is tangent to a /.--curve, the

peiieil will l>e transformed into a similar pencil at a point of the

//-curve.

That being established, we see that if <' is anv curve, and \s e

take an .)/, of plane elements tangent to it, we shall have corre-

spondingly an .)/', of plane elements forming a sui'faee. lint if ('

is the envelope ot /.--curves, the .!/' consists ot elements tangent to

a curve ('' ell\'elopcd b\' /.-'-clll'N'es.

If /' describes a surface ,S', and we take the .I/., of tangent ele-

ments, we shall have a corresponding '/.,, forming a surface .s''.

A plane element of the .17, gives a delinite plane element ot a

/.-curve, as we have shown. Therefore the surface N' is made

of plane elements belonging to //-curves and is the envelope ot

such curves.

EXERCISE

Study in detail the transformation defined by the equations

(./'-I- ///')
- :.';: .' = 0,

,-:(.''
-

///') j- ,-.' // 0.



riLUTKli XV

THE SPHERE IN CARTESIAN COORDINATES

111. Pencils of spheres. Tin- equation

( 1
)

i i i-

and the radius r,

If </ -- il. equation ( 1
) represents a plane which mav be regarded

as a sjiliere with an intinite radius and with its center at intinitv.

For con veiiieiiee we shall denote the left-hand member of equation

( 1
)
bv N. The equation

shall then denote the sphere with the coefficients '',./,. ,'/,. /<,, t\.

( 'oiisidcr now t\\"o spheres

N = il. ,s\-= i). (
:i

)

Thev intersect at ri^'ht angles when and onlv when the square

of the distance between their centers is equal to the sum of the

squares of their radii. The condition for this is easilv found to be

The spheres defined bv the equation

S
}

+ \S (I. (o)

\\heiv X i^ an arbitrary parameter, torm a
/><

n--// ot spheres. It
>',

and >'., are Imth plane-, all sphei'es of the pencil are planes. <);hcr-

wi>e the peiii-il
ci in

1

, am- otic and onl\ one plane, the equation <>t

\\ hich i- toiind li\
|
.laciii'_;' X '

in (

"

).
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The centers of the spheres of the pencil h;i\e the coimlinates

/ _ /I + V'-, //,+ \''^ /'1 + X/':\

\ /,+ \'i..
./, J- \//, '/,+ X'/J

and therefore lie in a straight line perpendicular to the radical

plane. This line is the /fur <//<,///, /-x of the pencil.

\\"e ha\'e three forms of a pencil of real spheres not planes :

1. When the spheres A' and N, intersect in thermic real circle '
'.

The pencil consists of all spheres through < '. The radical plane is

the plane of <
'. and the line of centers is perpendicular to t hat plane

at the center (if < '.

'1. When the spheres ,s' and ,s', intersect in an imaginary circle.

All spheres of the pencil pass through the >ame imaginary circle,

hut in the ordinary sense the spheres do not intersect. The radical

plane is a real plane containing the imaginary circle, and the line

of centers is perpendicular to it.

'\. When the spheres S and N, are tangent at a point .!. The

spheres of the pencil are all tangent at -I. The radical plane is the

common tangent plane at .1, and the line of centers is perpendicular
to the radical plane at . I.

The position of the radical plane in the second form of the pencil

has been fixed oiilv analvt icallv, A useful geometrical proper! v

is that all the tangent lines from a fixed point of the radical plane

to the spheres of the pencil are eipial in length. For if /' is

any point of space, and M the center of a sphere of radius /. the

square of the tangent from /' to the sphere is Ml'' /'. Applying
this to a sphere of the pencil (

~>
). \ve find the square of the length

of the tanent to be

It the point /' is in the radical plane (
ii

). this distance is inde-

pendent of X and hence the theorem.

It follows from this that ///>/<><//'<<///</>>///*///< (m-nx <>f tin rrnt^r*

of i>h,-riX nrlll'iilmtnl tu ,lll
.sy///,/',x

,,t' til, fH'llfU.

('loseK' connected \\ith this is the theorem: .1 >/'/"/' "/////"/<'/

fn iln/l t il'u x////i /v-.v /x nr'fhnifiiHilf <" <iH Xli/tt'/'i'X "t tin
fn

//<// il.'i

I/// tin i/t ilml ln/s //x I'l'nti'i' "ii tin I'liilii'/il
jiliiin'

"t tin-
j

//<//.

rattle



268 THRKK-DIMEXSIOXAL GEOMETRY

Tin- lust part of this theorem is a consequence of the previous

theorem. Tlie first part is a consequence of the linear nature of

the condition (4) for orthogonality.

112. Bundles of spheres. The spheres defined l>v the equation

,s
1 +x.s,+ /t.y.s =o, (i)

where N . N,, N are three spheres not belonging to the same pencil

and X, /J.
are arbitrary parameters, form a }>nn<ll<' of spheres.

The centers of the, spheres of the bundle have the coordinates

. /; + v:, + H *',
t _ //, -f x//, +_/z//:s _ //, -4- x/,, +

</, + \<t,+ fJ.'!..
<l + \i

From ( '2
) it follows that if the centers of the three spheres ,S'

,

Sa ,
s' lie on a straight line, the centers of all spheres of the bundle

lie on that line. The center mav be anywhere on that line, and

the radius of the sphere is then arbitrary. Hence *<
>/<</,//

,v/.\v

of il I'll //<//>' of
.sy-//i

/ .v I'ntlxixfit of <///
Spht')'t'f>

/r/iom- n nt< /> //c o/( ((

fttmiijhf htii'.

More generally, if the centers of ,S' . ,s' , and N are not on the

same straight line, they will determine a plane, and the centers

of all spheres of the bundle lie in this plane. This plane is the

l>I<iii>'
of fi-nti-rx. and any point in it is the center of a plane of

the bundle. In this case the three spheres .S',, .S',,
.S',

intersect in

two points (real, imaginary, or coincident), and all spheres of the

bundle pass through these points. If the two points are distinct.

thev are symmetrical with respect to the plane of centers: if thcv

are coincident, thev lie in the plane of centers. Hence we sec that

a oiiH'Hi' of .vy///Vi
.s i'oii>ti>ttn in r/i'Hi'fttt uf itplnTf* ll'Jinx, ci'ttfi't'x //<' ill

it fl.fi-' I
/'Itllli'

ilflil ll'liirjt jHlsx f///'"/l'//l it fl.fi'i/ I'oint.

The radical planes of the three .spheres N,, .s'.,, and X,, taken in

pairs, are

,/ N - </ .S
1 = 0,

:; 1 13

d
a
s - ",N,= o,

whicli evidently intersect in a straight line called the ///<//<<// "./-/.v

(>t tin' bundle. It is perjiendieiihir to the plane of centers and passes

through the jioints common to the spheres o| the bundle. The

radii-al plane of anv two spheres of the bundle passes t hi'oii^h the

radical axis.
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Any sphere orthogonal to three spheres of a bundle is orthogonal
to all the spheres of the handle heeause of the linear form of

condition (4), Jj
111. The centers of sneh spheres lie in the radi-

cal axis of the bundle, since bv ^ 111 thev must lie in the radical

plane ot any two spheres of the bundle, and anv point of the radical

axis is the center of such a sphere. It is not difficult to show that

these spheres form a pencil.

In fact, to mil/ binnUi' <>f Rpltm'n >' >/m>/ <ixx<><-'mti' <tn nrt/m</n/ni/

jn'in'il nf spheres ninl tn n// //"// "/' n Hnlirr? mi nrfJint/dnnl /<?///<//.

7Y/>' fflntinii <if
j)f'//<'//

iiinl fnniiUt' ix *;/<// tlml /*/// ,v/<//r/v
/' ///, in'tn-il

ix nrthnijnnill t"
I'i'i'i'i/ xji/n'/'f nf f/n' hninlli\ tin- I i in' >(' mitiTx "/' tin'

I
> t Hi'il In tfi,

j rndlcnl n.r/'x nf ///< fmnillf, <in</ f/if /////<<// i>fi/ni' nf the

yi'iit'il
ix tfn 1

ji/'O/i- nf i'1'nfi'rx <>f f/n' fnitHJIr.

As far as the details of the above theorem have not been ex-

plicitly proved in the foregoing, the proofs are easily supplied bv

the student.

Closely connected with the foregoing theorem is the following:

AH ttnha'fft nrtJini/nnnl 1 f/m //'./>'/ tttt/n'i'fx 1'/>rni it bundle <nnl <ill

>>Y(//7VX nrtjlni/nllill in fj/)''l
:

jl.l'i'i/
Xji/l

I'fi'X fnflll it
jn'lli'il.

The foregoing assumes that the three spheres ,S' , \. N, are

not all planes. If thev are, the bundle of spheres reduces to a

bundle of planes. Otherwise the bundle of spheres contains a

one-dimensional extent of planes through the radical axis of

the bundle.

113. Complexes of spheres. The spheres represented bv the

euuat ion
,V

1+XSs +AU%+J'tf4= , (1)

where ,V , .S',, ,S' . ,S' do not belong to the same bundle or pencil

and X. //. v arc arbitrary parameters, form a
<>,////</,./

ot spheres.

'I he radical planes of the tour spheres \ , N_, N . ,s' taken in

pail's intersect in a point, and the radical plane ot anv two spheres

ot the complex pass through that point, llns point is the /<///<//

i-i'iifff of the complex. From the properties of radical planes it

follows that the sijuare of the length of the tangents d:a\\n trom

the radical center to all spheres of the complex is constant. '1 here-

tore the radical center is the center ot a sphere orthogonal to all

the spheres of the complex. ( 'on versd v. il is easv to see that any

sphere orthogonal to this sphere belongs to the complex. That. is.
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tlic mniiili'j' nntxixtx <>t"
sjihiTt's orthnijnnnl to <i //.rr</ fxtxt1

xpnfre icfioHC

1-t'ntt'r /x thi' rii'/ii-'i/ <-i'ntfr <>f t/ic ftnj>!f'j:

If the four spheres intersect in a point that point is the radical

center. The base sphere is then a sphere of radius zero and the

complex consists of spheres passing through a point.

The above discussion assumes that the four spheres $^,
,S'o , N.

?

, .S'
4

are not planes. If they are, the complex simply consists of all

planes in space. In the general ease the complex contains a doubly

infinite set of planes which pass through the center of the base

sphere.

114. Inversion. Let a be the center of a fixed sphere .S', /"" the

square of its radius, and /' anv point. The point /' mav be trans-

formed into a point /'' by the condition that <>/'/'' forms a straight

line and that
()/>.(>/>'=]?. (1)

This transformation is an itin'r>*i<>)i, oi' transformation by /vv'/>-

roi-itt rii'lii/x. The point <> is the center of inversion, and the

sphere S is the sphere with respect to which the inversion takes

place.

If the point <> has the coordinates
(./;,, // , 2

n ), the equations of

the transformation are

.r'=r -f
/fJ( ''"-'

If'

where I!
1 =

( .r r
Q

)' + ( // // )' + (z - 2
1

,,)

2
.

In this transformation the constants mav be either real or

imaLriuarv. If (./-
|t // . z ) is real and /r real and positive, the

inversion is with reference to a real sphere. If ( ./ . //.. 2
{

~)
is real

and k" real and negative, the inversion is with reference to a

sphere with real center and pure imaginary radius. In this ease,

however, real points are transformed into real points.

From the definition and equations ('!) it appears that anv point

/' has a iini'jue transformed point /''. and. conversely, unless /' is

at the ori'mi. or on a minimum line through '
>, or at infinity.
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To luilitlk1 these special cases we take <> at tlir origin and write

equations ('2) with homogeneous coordinates as

pz
-

k-zt.

pt'

' = /+ //- + r.

From ('}) it appeal's that the transformed point of n is indeter-

ininate, luit that if /'approaches n alon^ the line ./://: z ----- I : m : n.

the point /' recedes to intinitv and is transformed into the point at

infinity /:///://:<). Hence we mav sav that the center of inver-

sion is transformed into the entire plane at intinitv. ('onverselv.

anv point on the plane at infinity but not on the cin-le at infinity

is transformed into <>.

If /' is on a minimum line through <> but not on the imaginary

circle at infinity, then ./://': z' =-- .r : >/ : ,r and t' = H. That is. all

points on a minimum line through <> is transformed into the point

in which that line meets the imaginary circle at infinity, ('on-

verselv, if /' is on the imaginary circle at infinity the transformed

point is indeterminate, but ./' :

//'
: z' = .r : // : .~. so that any point mi

the circle at infinity is transformed into the minimum line through

that point and the center of inversion.

Consider now a sphere S witli the equation

i ( ./- + >r + 2* ) + -. t'jr + -
//// + 1' hz + ''-<>. ( 4 )

It is transformed into

'ik' + -2.
firs + -2 .//-// 4- - hk-z + <( .>- -f //' 4- r )

= < '. ( ">
,

This is in general a sphere, so that in general spheres arc

transformed into spheres. But exceptions are to be noted:

1. If ' 0, </ 0. (4) is a sphere through n and (
.">

) a plane

not through < ), so that sphci'es tliroilgh the center of inversion are

transformed into planes not through the center of inversion.

'_'. I f 1 1 I ','-- <>, (
4 ) is a plane not through n and (

~>
) a sphere

through < >, so that planes not through the center of inversion are

transformed into spheres through the center of m\ersion.

:>. If a -
0, ,-~ 0, ( [ ) and (

."
) represent the same plane through ".

so that planes through the center of inversion are transformed into

themselves.
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Bv ;ni inversion the aii'jde between two curves is equal to the

alible between the two transformed curves; that is, the trans-

formation is mifnnnnl. To prove this we compute from
( ~2) (with

j- = I), if
= 0. .- = ).

, /.,-

' =
>4 ; ( ,/-+ z

- - r ) Lr - -2 .>>/
<

///
-

'1 j-z h
} ,

I!

< / y
' =

(4 I

- -
-'//

' /./ + ( .'- -
//- + z' )

'
1>i
- -

//
? ' h\

-

, (
)

)

/I

Hence, if we [dace <h'~-= </.r"
J

4- '/'/""+ '^'" :'"d </x'- </./" + (

///"4- '^",

we have

Now. if '/./. '///.
'/r corresponil to displacements on a curve from

/', and 8.r. 8//. ^ to displaeements alon^ another curve from /', the

an_rle n between the curves is ^iven bv

Similarl, the anle n
1

between the transformed curves is

and it is easy to prove from (<i) that cos n = cos n'.

Anv pencil, bundle, or complex of spheres is transformed into a

pencil, bundle, or complex, respectively. 'I he line ol centers of the

pencil is not, however, in general transformed into the line of cen-

ters of the transformed pencil, but becomes a circle cutting the

spheres df the transformed pencil orthogonally. Also the radical

plane (it the pencil is not transformed into the radical plane of the

transformed pencil, but into one of the spheres of that pencil.

Similarly, the plane of centers of a bundle is transformed into a

sphere cutting all the spheres of the bundle orthogonally, and the

radical axis of the bundle is transformed into a circle orthogonal

t the transformed bundle.

< )n the other hand, the base sphere ol a complex is transformed

into the base sphere o) the transformed complex.
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If we take a
jit'iicil

of spheres interseetiiiLj in a real circle and

take the center df inversion on that circle, the pencil of spheres is

evidently transformed into a pencil ot planes. It we take a bundle

of split-res intersect in>_
r in two real points .1 and //. and take .1 as

the center of inversion, the bundle of spheres becomes a bundle of

planes through the inverse of /,'. It we take a complex of spheres

and place the center ot inversion on the base sphere, the complex
becomes one with its base sphere a plane; that is, it consists of all

spheres whose centers are on a tixed plane.

EXERCISES

1. Trove that; by an inversion with respect to a sphere N all spheres
which pass through a point and its inverse are orthogonal to >'.

2. Prove that a point and its inverse are harmonic conjugates with

respect to the points in which the line connecting the tirst two points

intersects the sphere of inversion.

3. Prove that the inverse of a circle is in general a circle and note

t lie special cases.

4. Prove that if two figures are inverse with respect to a sphere >'
.

their inverses with respect to a sphere N, whose center is not on >' are

inverse with respect to V. the inverse of >' with respect to >',.

5. Prove 1 hat i f t wo t inures are inverse with respect to a sphere >'
. t heir

inverse with respect to a sphere >', whose center is on ^ are svmniet rical

with respect to the plane /''. the inverse of >' with respect to
>'.,. Coii-

verselv, if two figures are symmetrical with respect to a plane /' t he v are

inverse wilh respect to anv sphere into \\hich the plane /' is inverted.

Therefore inversion on a plane is detined a> reflection on that plane.

(i. I'ro\-c that it' X i-; a sphere of radius / and >'' is its inverse, the

radius of >' is cipial to the radius of >' multiplied hv the sijiiare of the

radius nf the sphere of inversion and divided hv the absolute value ot

the power of the center of inversion With respect to >'.

7. Prove that anv two nonintersect hit: spheres ma\ be inverted 1>\

an inversion on a real sphere into concentric spheres.

s. Prove that any three spheres may be inverted into three spheres

ot ei|'ial radius.

'.i. Prove that inversion on a sphere with real center and pure imauri-

na r\ radius // is equivalent to inversion on a sphei'e with the >ame center

and real radius /, folloued l>v a transformation \>\ \\hich each point is

replaced liy its syillinet rieal point u it h respect to t he center of inversion.
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10. A Mirface which is its own inverse is called nn'i//iii/ninfif. Trove

that aiiv anallax'inat ic surface nits the sphere of inversion at ri<,
rht

angles it' tin- point of intersect ion is not a singular point of the surface

ami is the envelope of a fainilv of spheres which cuts the sphere of

in versi< in ort ho^miall \ .

11. I'ruve that the product of two inversions is equivalent to the

product of an inversion and a metrical transformation or in special eases

In a metrical transformation alone.

115. Dupin's cyclide. The transformation by inversion is useful

in studying the class of surfaces known as flu/iin's ry/r//,/,-*. These

are defined as the envelope of a family of spheres which are tangent

tot hive tixed spheres.

It the centers of the tixed spheres do not lie in a straight line we

mav l>v inversion bring them into a straight line. To do this we

have simplv to draw, in the plane <>| the centers of the three

spheres, a circle orthogonal to the three spheres and take anv point

on that circle as the center of inversion. The circle then goes into

a straight Hue which is orthogonal to the three transformed spheres

and hence passes through their centers. This is a consequence of

the conforma! nature of inversion. For the same, reason the surface

enveloped l>v spheres tangent to the original three spheres is in-

verted into a surface enveloped by spheres tangent to three spheres

whose centers lie on a straight line.

\Ye shall study first the properties of such a surface and

then liv inversion deduce the properties of the general Ihipin's

cvelide.

Let us take the line of centers of three fixed spheres as the axis

ot z and the equations ot the spheres as

-
-

( / '
''

- *
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to the sum or tin- difference of the radii of tin- two >phere>. Thi

^ives the three euations

n- + /- + ' - / + '7
= (/i r.)".

which have in general four sohilions of the form

<_= const., / --- const.. ir-f-A const. (},

'1 heretore the sphere ('2) helon^s to one o| Imir laiuilies each

ot which consists ot spheres \\iih ;t constant radius and with

their centers on a fixed circle. Kaeh family ohviouslv envelops a

rhiLj surface.

I here are therefore in u'eneral tour Ihipin's evelides determined

hv the condition that ihe enveloping spin-res arc lan^'ciit to three

lixed spheres.

Let us take anv one of the solutions (4) and change the coi'inli-

nate system so that < = U. The equation of the family of spheres

may then he written

( ./ </ ci is >' + ( //
"

n
sin )"+ 2"= /", (

")
)

where 61
is an arhitniry parameter and </ and / are coi^tants.

The surface cii\'eloped l>y (^) is

( j
" + tj~ + z~ + (/,';'

- /"
'"'

4 n -

( .r' + //" ) (
' '

)

This is the equation of the ////// an !/<(<> formetl li\ re\'ol\iiiL,
r aliout

the axis i if r the circle
( ./' <i

:

) -f- .;-/'. ( i )

lleliee ''//// Ihijiiiix >-//<'/i</f t# ///- ////, /> >,t tin rtn<j ,v///-/./.- -y. //// /

Li/ i-<i',,lr t ii'/
'I I't/'t'lf ill*,, nf <ni il.l/'x ii'it in it a

filil/ii'.

'I'he riii'4' >urfacc contains t\\o families of circles forming an

orthogonal network. The one famiU' consists of the meridian cir-

cles cut out hy planes through the a\i< of reyohltioil, the other ol

circles of latitude made l>v sections perpendicular to that axis.

Since, hy inversion, circle- are transformed into circles, and angles

are conscr\'ed. there cxiM on any Piipuis c\clide t \\ o similar

families of circles also forming an orthopmal network.

The rin LT surface i- the envelope not onl\ of the family o! spheres

whose ei
pi at ion i-> (

."
j
hut also of i he famih \\ it h the equal ion

./ f i/-
'

( : ./ Ian 0)~- ( -' see r i". (

^
)
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This family consists of spheres with their centers on <>Z each of

which mav be generated by revolving about <>/. a circle with its

center on <>/ and tangent to the circle (7). The spheres of this

family are tangent to the rin'_
r surface alon^ the circles of latitude,

while the spheres of the family (
.">

) are tangent to the rim_r surface

aloii'_,
r the meridian circles. The family of spheres (

s
) mav be deter-

mined bv the condition that they are tangent in a definite manner

to three spheres of (
"> ).

Ilelice <ln]j Ihi/iinx fj/rli<1t' until f'f iffttft'ittt'il i/i ( I''" H.'ili/x <ix (/if

tni'tl"[K
nt il t't in thl nt

xj'tii
r, x ruiixixt

tiiij
<>>

xjiJni'i
x tit it'i* nt t thl'fi'

fl.i'i'l xjifii'i'ix.
Eiti'lt JttiHtltj '[1 Xjilii'i't'x

ix fii/ii/f/if fn tin' f//i'!l<lf <ll"it</

<i tit mil if 'if fi/'i-li x, tin- tii'" fnmtlifx f <//</, * hftn<f nrtftni/'UKtl.

The planes of each family ot circles interseet in a straight line.

This follows from the theorems ot x 1 1 '2. since the inverse spheres

of the spheres (
;>

) belong to the same bundle and t he circles arc inter-

sections of spheres of that bundle, so that their planes pass through

the radical axis of the bundle. Similarly for the sphere- (
S

>.

The circle (7) intersects the axis of r in two real, imaginary, or

coincident points. Theid'oiv a I Mipin's evdide has at least this

number of singular points. \Ve shall see later that it al-o lias

other singular points, but we shall confine our attention at present

to these two. Call them A and /'. The spheres of one of the fami-

lies which envelop tin- evdide intersect in A and /.', as is seen in

the ease of the rin^ surtace. Consequently, if one of the-e points,

as A. is taken as the center of inversion this family of spheres

become- a family of planes, and the evdide invert- into a surface

enveloped by spheres \\hidi are tangent to three of these planes.

If A and // are distinct the planes pa-- through the puint />',

the inverse of //, ami the evdide is inverted into a cone of revolu-

tion, which is real it A and />' are real, and imaginary if .1 and 11

are imaginary.

It A coincide- with /<' the plane- are parallel and the cvdide is

inverted into a cylinder of revolution. \\Y have accordingly the

theorem: .1 Itufiin *,////,/,' ///</// ////</_//.<
/, /'///,//,,///(,'.< ,i !.,//, <>t /-/"-

( 'oii.-ei
|

uent 1\' \\'e 1 1 1 a v obtain a ii \" I'Vclidc in \\liieh the singular

point- A and // are distim-t b\- in\ ert iic_r the cone

o
<

'

)
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from anv real or imaginary center of inversion witli respect to anv

real or imaginary sphere; or, what amounts to the same tiling, we

may transform tlie origin to anv real or imaginary point and invert

Irom the origin. The equation of the cone is then

( ./ a )' + ( //
-

tf y - m- ( .;-
- 7 r - 0, (111)

and its inverse with respect to the origin is

( ic -f- J- ,/i-y- ) ( ./- + i/- -f- r y - 'I k- ( a.r -f tf;i
- -

uc-jz ) ( JL
:- + //- -f z~

)

+ //( r- +//--/// -z-)- : 0. (11 )

To consider the case in which the points A and /.' coincide, we

invert the cylinder

and obtain for its inverse

(-'+ f - r
) ( .r + //'- + 2- )-- '1 k~ (aj' + tfii ) ( .'- + //- -f 2'-)

The cvclide is therefore, a surface of the fourth order unless the

lirst coel'ticient in either ( 11) or ( 1 '1
)
\anishcs. Iut this happens

when and onlv \\hen the cone (1") or the evlinder (111) passes

through the center of inversion.

It now we make the equations (11) and (!')) homogeneous,
and place / (I to determine the section with the plane at inlinitv,

we j^et the circle at inlinitv as a double curve when the surface is

of fourth order, and the circle at inlinitv, together with a straight

line, when the surface is of the third order.

Hence <i
Ditfiiit's cii<-li<l<' ix <i xiirfiii'f <>f /// fourth r<l<'r tntrt

thi- i-i i-cl<' at iiifiniti/ <tx it tlnitl'li' r/trrc, // it xt<rt'it<;- <>f th< t/tir</ "/</< r

ir/th 'In' <//</, (// i /it! nit i/ <tx (/ xi in
fli'

</! //>'.

\\'e proceeil to lind the singular points of expiation (11). \Ve

can \\ithoiit loss of ^eiieralitv so turn the axes that ^ 0. and

will make the abbreviations

.1 .= ,i- - nri\

/.' -'- -f //- f r,

/ ~r\ --

and write the equation a--

.I/,'- 'Ik' 1. 1! f //(/+ V" //'"':"') ". (
11 )
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Tin- singular points are then the solutions of this equation and

the following, formed hv taking the partial derivatives with respect

to .r, //.
and z :

4 . 1 /,'./
- - k-a R - 4 trLjr + '2 k\r =

<>,

4 . / ////
- 4 /- Li/ + -2

/-'//
- 0, (15)

4 JA'* + '2 k-in-yl t

' - 4 k-Lz - -2 k*,,rz = 0.

liv multiplving equations (!>) in order bv .r, i/, z and adding, and

subtracting the result from twice (14), we obtain

(.1A'-A--A )/' = 0.

Also, by combining the tirst two of (15) we have

'2k-uif/i' = 0. (17)

From (17) we have either A' or
//
= 0. Taking lirst the

condition // <>, but // ^ (.), from (10) and (15;,

whence

The point
(

.,

'

;,' (I,
_ j is therefore a singular point. It is

the inverse of the vertex ot the cone and is the point II of the

discussion on page 270.

Consider now the solution A' = of equation (17). From (15)

we have cither ./ - <>, //
= I), z 0, or L =

'

z n. The origin is

therefore a singular point, the inverse of the section of the cone

with the plane at intinitv, and is the point .1 of the discussion on

page J"'!.

The alternative A' O, L=
'

'2=0 leads to the two singular points

}

'I

j.
'I hese points tail to ex ist it /< : n. but in that case

the inversion is from a point on the axis of the cone, and the

surface ( 11 ) is thru a rin^ surface.

The two sium ilar points ju.-t found are each connected with ./

] ; i \ ]

'

and /' t)v minimum lines.

It \\ e consider in the same wav eijuation ( 1 :'> ), \\ c obtain

simihii- n-siilt- except that the singular point /,' coincides \\itli .1 at
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the origin, since tlic assumption _//
leads to the conclusion /,' ".

The t\vo points i
*

I aiv a^aiii sinjjulur points unlrss u,

when the surface ( 1 '!
)

is a rin;_,
r surface with a single singular [mint.

.1 Ihijiiiix ci/flitlt' iilin-h i* H"t it r///'/ xit/'tiii-i' liiix in i/i'/it rul f"ii r

fi/i/ti- xtni/i(h(f fn'tntx
tn'" "j //'Iti'-h iii'i

1

t'litt/u'cti'il with tin "///-/ ////

In/ in/ ntin n ill ll/tt'X. I it'<> "I f/ii'Kf' Xtiujniiir ji'n/itu nni/l fuiiiftilt; lit

t('/i/r/t film- tin' (////(/(' Inix th/'fi' linttf xuti/nlili' /'"intx tir<> -//' ti'Jitfh

i.tt't' i'"iiii' '(< <l K'tfft tin' tin r<l !>i/ ml ii t inn 111 liitrx,

It tOllous, tit' course, that the Dujiin's c\cliilcs are not the gen-

eral surfaces of fourth order with the circle at inlinitv as a doiihlc

eiiiA'e nor the general surtace ol third order through the circle at

intinitv. '1'lioe more general surfaces will he noticed in the next

sect h in.

EXERCISES

1. Trove that anv l)ujiin's evelidc is iintillagiuatie with respect to

each >phere of two pencils of Spliel'eS.

2. I'rox'e that the centers of cadi I'aiidlv of ellVelojiillg sjiheres of a

J
)ii]

iin's c\'el ide lie on a ei Mile.

Ii. Prove that the two lines in which the planes of the two families

of circles on the iMipin's cvclide intersect are orthogonal.

4. I'rove that the circles on a I)upin*s i-velide are lines of curvature.

( A line of curvature on a surface is Mich that t wo iiorinaN to the surface

at two consecutive point^ of the line of curvature intersect.)

f>. I'rove that the oiih' surfaces which have two families of circles

for 1 1 nes of curvature are I hi pin's cv el ides. ( ICxcepl ion should 1 >e made

of the sphere, plane, and minimum deVelopahle, tor \\hi.-h all lines arc

lines of eiirvat lire.
)

116. Cyclides. A eyelide is detined h\- the equation

"( >'-+ '/'+ .-)-+ ",('" 4- //' f-r)-r-"., (l
- ( 1 '

\\here tt
it

is a constant, n a |'ol\-noinial of the lir-t decree, and //
.

a

polviiollliill of the second decree ill ./'. //.
:. The l)llpllis cyclides

arc special cases of the general eyelide.

If n ( i in eipiaiion (1 ) the surface is of the fourth derive

and rcpi'cseiits a 1 >ii piad rat ic surlace \\ith the iiiia'_;'inar\ circle at

V as a d< mlilc ciir\ e.
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If n= 0, equation (1 ) is a general of the tliinl degree and repre-

sents a cubic surface passing through the imaginary circle at infinity.

I Vgenerate cases of t lie cydides may also occur if, in equation (
1 ),

f/ -= and // is identically y.ero. The equation then represents a

qnadric surface or even a plane. These cases are important only

as they arise by inversion from the general cases.

In order to study the effect of inversion on the cyclide \ve may
take the center of inversion at the origin, since the form of equation

(
1

)
is unaltered by transformation of coordinates. Such an inver-

sion produces an equation of the same form, which is of the fourth

degree if //..contains an absolute term and of the third degree if u.,

does not contain the absolute term but does contain linear terms.

In the former case the origin is not on the surface; in the latter

case the origin is on the surface, but is not a singular point. Hence

The ittt't'rxc f an
i/ I'urliJe from a

jK>i
/tt nut n it /x <iltt'ii

t
//x <i cui-lidi'

i

if tin' fourth order. Tin 1 infers? of ant/ cyi-lid? from <i jiotnf
on it

which tx not </ sinijuhir point in ulwtfj/x <t cyclide <</ t/n 1 t/t/nl "/'<Ar.

In general the cyclide will not, have a singular point. If it does

we may take it as the origin. Then in equation (1) the absolute

term and the terms of tirst order in ?/ disappear. By inversion from

the origin there will then be no terms of the fourth or the third

degree. Hence the ry<-l!<ji- with <i tiinyiihir ])"!nt /* tin- inrcrxe of a

ijiKidric xiirfiti-t'. ( 'onverselv, as is easily seen, flu- //^v/v-v of n
^iiitd r'n'

sttrtiii'i' IK d cyclide trtt// at ledxt one ximjular point.

('oiisider now a cyclide with two singular points .1 and /' which

do not lie on the same minimum line. If we invert from ./ the

evdide becomes a quadric surface with a singular point at />'', the

inverse of /.'. It is therefore a cone. Hence tin- <//<!/'</, u'if/i ti/'o

KlUf/nlitf [lomtx not on f/o' ^itiin 1 minimum line ix t/if tni'i'/'ti' <>f <t
ijHiliinc

i-o/n-. ('onverselv, ttn- ////v/'.sv of n umiilric. dim1 from o-
fioint not on tt

tf< <t i-yrlidf with nt lenxt tn'o nini/ular j>ointx.

\\ c have shown in ^ 11.") that a Dnpin's cyclide of the fourth

onler hits in general four singular points. We shall now prove,

conversely, that <i i-i/<-/i</,- of' tin- fourth order iritli four xin</n/<<r

[ioi
nt* ix ((

Itujiin'x ri/i'liile.

It the four points are ./, /.', (\ I> they cannot all be connected

by minimum lines, since that is an impossible configuration. \\V
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will assume that ./ and /.' are not on a minimum line, and will

invert from ./, thus obtaining a quadric cone /' with its vertex at

//', the inverse of /.'. Anv plane section of the evelide through All

is a curve of the fourth order with two singular points at A and /-'

and two other singular points on the circle at inlinitv. It therefore

breaks up into two cirdc.s and is inverted into two straight-line

generators of the cone /'. The cone is enveloped bv a one-parameter

family of planes tangent along the generators. Then-fore the

evdide is enveloped bv a one-parameter familv of spheres tangent

along the circular sections through .1 and /.'.

The plane sect ion determined bv the points .1. /.'.and C has t hree

singular points besides the two on the ciidc at inlinitv. Therefore

it consists of a circle and two minimum lines, and since All is not

a minimum line, A<" and /!(' are. Ilv a similar argument A/> and

/>'/> arc minimum lines. Hence ('/> is not a minimum line.

\Ve mav accordingly invert the cvdidc from (

'

and obtain another

cone with the properties of /'. In particular, the straight-line gen-

erators of this cone are the inverses of circles on the evdide, and

its tangent planes are the inverses of spheres tangent to the evdide.

Therefore the cone /' is enveloped bv spheres, the inverse with

respect to .1 of the last-named familv. Then-fore /' is a cone of

revolution and, bv 11;"), the theorem is proved.

EXERCISES

1. I'rove that the envelope of spheres whose centers lie 011 a i[Uadrie

surface and which are orthogonal to a ^iven sphere is a e\ elide.

2. iMseiiss the plane curves called lii<'in'ti!<i r <//f ///'.-, defined bv the

ei
|
liat H ill

and t race the analogies to 1 he ey elides.

15. I'rove that the envelope of a circle which moves in a plane so that

i's center trace-, a ti\ed conic, while the circle is orthogonal to a tixed

circle, is a bicirciila r i|iiart ic.

1. The intersection of a sphere and a quadric snriace i^ a .^/J,'/'"-

ifiniil ,-'n\ I'rove that a spheroqtiadric inav be inverted into a bicirciilar

qua rt ie and c< in verselv.

f>. I'rove that, the intersection of a evelide and a sphere ;-> a sphero-

niiad rie.



CHAPTER XVI

PENTASPHERICAL COORDINATES

117. Specialized coordinates. lYnUsphrrir.il coordinates arc based

upon tivr spheres of reference, as the nainr iniplirs. It is customary

to ilrt'mr thrin by usr ot thr ('artrsiaii equal ions of thr livr spheres,

lui \vr prefer t<> build up the coordinate svstnn iiide[)eii(U'iitlv of

the ('artrsiaii svstnn, usinin' onlv rlrinriitarv ideas of inrasurrinriit

of real distance. This brings into emphasis the fact that penta-

spherical coordinates are not dependent upon ('artesian coordinates,

but that the two svsteins stand side bv side, eadi on its own founda-

tion. One result is that certain ideal elements pertaining to the

so-called imaginary circle at intinily which are found convenient in

('artesian geometry arc nonexistent in pentaspherical '_;vomrtrv :

and. conversely, certain ideal elements of pentiispherieal L;'romrtrv

do not appear in ('artesian ^vonietrv.

Let <>.\'. <> y, and <>/ be three nmtiiallv perpendicular axes of

reference intersecting at < >. I' any real point. <>/' the distance from < >

to /'. and <>L. i>M. <>.\ the three projections of <>/ ,,n />.\\ < >}\ < >/

I'rspeet ivelv. A l'_;vbraic si^'iis are to be attached to the three projec-

tions in the usual way. but <>/' is essentially positive. We mav then

take as coordinates ot /' the tour ratios defined bv the equations

^:^:^:^:^=tfJ'':OL:(tM:0.\-: \ (I)

It is obvious that to anv real point corresponds a set of real

roi'irdinatrs and that to anv set ot real coordinates corresponds

our i

-ral point. 1 In 1 extension IM mia'_Miiarv and infinite points is

made in the n^nal manner. In particular, as /'recedes from " indefi-

nitely in anv dirrrt ion. the coordinates approach the limiting ratios

1 : O : : <) : n. wliicli arr the coi'ird mates ot a real point at infinity.

This, however, i- not the onlv point at infinity, as \vill appear when

\yi- consider thr tormnla tor tin- distance betwrrii t\\'o points.
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The relation (
1

) may IK- reduced to a sum of squares by replacin

the coordinates f. by new coordinates .r., where

whence

pr,
: l! f,

-: rr( J

p.r,
- -

.
(T( '2

In these coordinates, \vhieh \\'e shall use hriiect'ortli. a real point

lias four of its coordinates real and the fifth pure imaginary (the

proportionality factor p being assumed real). '1 his slight nieon-

\'en leiice, if it is an inconvenience, is more than balanced l>y the

symmetry ot eijiiatioii (>). The eoi'irdmates of the real point at

intinit \" are no\y 1 :
(I

:
(I

: : /.

It
/,'

and / '. are two real [mints with coordinates //. and j\ respee-

tivelv. the project ions of the line /.'/! mi o.\. <>}. i >/, respect iyely,

are easily seen to be

and hence, since the square ot the distance ot the line /.'/! is equal

to the sum o| the sq uares ot it s project ions, \\c com put e reai I il\ . \\ it h

the aid of ("">), the //.s7- m<-> t'"/-i//n/<t for the distance -/ lietween two
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Tin 1 formula (>), thus derived lor real points. will IK- taken as

the definition of distance between all kinds of points. From this it

appears that </ is infinite when and onlv when one of the points

satisfies the equations ./^
+

i-'\
" an( l w (-''. //)-'-

" Hence tin' Inrttx

<>f paint* >if infiniti/ ix
;/t>'>'/i Lif t/n'

i'<f>ifit//i
./ -)-/./= 0.

Since tlie coordinates of all points satisfy (">), we have for points

at infinity .i\ +''''. and j\; -+- .r.j- + -/'
4

J " Therefore the point

1:0:0:0; / is the only real point at intinitv. The nature of the

imai^inarv locus at intinitv will appear later.

118. The sphere. A sphere is defined as usual as the locus of

points equally distant from a fixed point. This definition includes

all spheres in the usual sense and all loci which are expressed l>v

equation (
*5 ), 1 1 7. in which

//.
is fixed and <l = r a constant. This

equation is

[2 //j
+ (

//,
-f //O r] .r,

+ -1
//.,.>., + -2

//,/-,+
-2 y

(

.r
4

+ ['2 //. + /
(;/, + '//,) r] ./;.

= o. (1 )

This is of the tvpe

\\-here P''
{

= -
//,
+ ( '^ + ''// ) >''

P"> =-//,-

P't.
= '2

//. 4- / ( //
J

4- /'/, ) /".

From these equations and the fundamental relation M (_//)-

we have

-f- /</
"
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Ei't'rij liiti'iir
t'tjittttion <>f tfif t

t>//' (-) ;vy>/v.vr///'x
'/

xy<//7v, /// >'i/tt>r

anil tltr rmltHK <>f ichii-Jt <ir<- </'('<'/< /<>/ eyiuititinft (4 ).

It is convenient to represent by T;(") the numerator of /' in (4j ;

thatis '

iW=.i?+!+*+<i*+,i?.

We have, then, the following classes of spheres:

CASK I. ?/('/) =r-0. ynnsjM'i'idl n]>Jn'n'8.

Subcaw 1.
?; (

"
)

r-^- 0, it
^

-\- /V - i). 1'raper sphrrat. The center and

the I'adius of the sphere is Unite, but neither is necessarily real.

The sphere does not contain the real point at inlinitv.

Siifii-nxt' J. TI(<I)
: - 0, <i + i'i.~- 0. (h'Jiniirii i>lit>n'*.

The radius

is infinite. The center is the real point at infinity. Since a plane

is the limit of a sphere with center receding to infinity and radius

increasing without limit, we shall call this locus a plane. This

may be justified by returning to the coordinates ,.
The equa-

tion then reduces to ".,., -f- '*.,,,-(- ", t

~
"i^-,

= (> w ' ln t '"' condition

<>';+ //.i'-f- tif ^- 0. By n'pctition of the familial' argument of analyti-

cal geometry this may be shown to represent a plane.

Since this case differs from the preyious one essentially in that

the coordinates 1:0:0:0: / now satisfy the equation of the sphere,

we may say : .1. y'r<yr jrfittn' m<n/ /' defined <t* <i nontpct'itil sphere

irJn'i'/t
jinn.*!'.* tJir'iiii/h flu' r>'n/ point "f

infinity.

CASK II. ?/('/)= 0. Special ji1n>rf*.

Snb,;i^> /. 7;('/)
= "i " +''''."-'- 0. /'nit if

xjihfrt'ft.
The radius is

/.ero and the center is not at infinity. It is ohyious that the sphere

passes through its center //,-'',, and if
//,

is real the sphere eoii-

tain> no other real point. The sphere does not contain the real

point at infinity.

,S'////,v/.v,> J. 7j(,/)!), // -f- >ii
_

i._- 0.
SjH'i'itil ji/iitii-ft.

The radius is

indeterminate. The center is >r : ft. %
: n: tt : itt, which is a point at

intinity. The e(|uation of the sphere may be written

which, in ('artesian geometry, would be that ot a

(^
s "

) In this case the sphere contains the real point at

Hence yve may say: .1
x/n'.-i>i? /(/<>//<

/.< -/ j>"int ,<./<///
ii'Jih-h

p'lxxi-x (lifi/ifi/h thi- /.<//
jni//tf

"f
infinity.
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The locus at inlinitv is, as we have seen, ./ -f /./.= 0. Tliis eonies

uiiiK-r Case II. Subcase '2, and is therefore a special plane with its

renter at 1:0:0 :<);/; that is, tin- Im-iix <if
ii/fuiiti/ IK <t

*]>fi-i<i[

j<l,ni<-
>rJix>' 1-,'ttti-r /. tin' /''<!/

i>"'nit
'it iiifinlti/.

119. Angle between spheres. The angle between two real proper

spheres is equal or supplementary to the angle between their radii

at anv point ot intersection. For precision we will take as the

an^le that one which is in the triangle formed by the radii to the

point of intersection and the line of centers of the spheres. If

is this angle. </ the distance between the centers, and r and /' the

radii, then , ., ,., ,

ir r' + r
' - _ rr cos v.

If now the equations of the two spheres are

y,/.r = 0, V/,.r = 0,xW ' ' sl ' '

an easy calculation !>v aid of formulas (4), ^11^, and (i!), 117,

whence

C-OS0 = "l'l + "- ',-+'V.,+ "4 '4+"- ':, _ (1

This formula has been derived for real proper spheres intersect-

ing in real points. We take it as the definition ot the angle

between anv two spheres. The student mav show that if one or

both of the two spheres becomes a real plane, this definition of

angle agrees with the usual one.

Tiro
.v////c/v.v "V'/,./;

-~ (I. "N 7< ,-./,.=
<rri' nrili<i<nml H'/n'ii

rtf, _f_
/, 4- /,

a. /, -f a./.. = 0. (2)

It both of the spheres are iioMsprcial. this agi'ees \\iih the usual

detinition. If, howe\'er, "S n^-. is a special sphei'e. the condi-

tion expresses the fact that the center of "^
'',./',-

(l lies on the

shere V/../- o. H

'/'//' //' 1-,'XHll I'!/ 'I/I'/ tllll'li'l, lit i-'i/lllit I'l/l tllilt ll Kill I'Ull
,vy<//(

/'( ftflnllhl

/..
f,,'tJl'ii/"/Hll f" Hunt In- f

}<j>/l>ri'
/x t/I'lf t//>' <;/,,- nf tlf

*l>,'<-i'l1 vji/t>T>-

11, ,,,! tin ntJl.-r
-'/'/"

I'' .
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EXERCISE

Prove tliat the coetlicients
'/,

in the e(|ii;itioii of the sphere are pro-

portional to tlie cosines of the angles made l>v the sphere with the

coordinate spheres, and that the cosines themselves ma\ he found l>v

dividing ", hv V"i" -f " ..* + "
y
" + -'4" 4- ":? Compare with direct ion cosines

in < 'artesian geometry.

120. The power of a point with respect to a sphere. If r is the

center of the sphere

2v,=o,

with the radius /, and /' is any point with coordinates //,, the dis-

tance ('/' is easily calculated by (1), $ 1 1 s, and (!), ^117. with

the result :

\\'e shall place

= r _ r
- = - - -- -

(

.

,

(",+ ''",-,)(//!+ '/A', >

and shall call S the power of the point //,
\\'ith respect to the sphere.

If the sphere is mil and the point //,
is a real point outside the sphere.

the power is the square of the length of any tangent from the point

to the sphere. If the sphere is a point sphere, the power is t he square

of the distance from the point //,
to the center of the sphere. In all

other cases e< pi at ion (
'2

)
is t he detinit ion of the power.

From ('2) may lie obtained the important formula for a non-

special sphere :

The above discussion fails if the sphere is a plane. \Yc may.

however, obiain the meaning of formula (-\) in this case by a

process. We have, from ('_'),

where /'.I is the shortest distance from /' to the sphere. Then

,s' / /'<
'

r
'

/'
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Now let ('' recede to inlinity along the line /'('. The sphere

becomes a plane perpendicular to /'./. Hut the limit of - as

r becomes infinite and
''j +'*''., approaches zero, is 1, from (1).

Therefore
s

-

Limit- = -2 I
1

A,
r

where /'.I is the perpendicular from /' to the plane. This result

mav be checked bv replacing j\ by ,

and using familiar theorems

of Cartesian geometry.

The equation of any nonspecial sphere mav be written so that

i](<t)=\. The equation is then said to be in its normal f<inn ^ and

the denominator <i{+ '/.;-f <ij+ <i; + a: disappears from equation (-} ).

121. General orthogonal coordinates. Let us make the linear

substitution

p.r[
= a

tl r, + a, .,>._,
+ n

i3 j-^ + n
, 4

.r
4 + a

,s
.r

5 , ( / = 1 , -, :J, 4, .">
) (1 )

in which the determinant .nc
ik \

does not vanish. Then to any set of

ratios j\ corresponds one set of ratios r(, and since the quantities .r.

satisfy a quadratic relation tu (./)
= (), the quantities ./-,' satisfy another

tjiiadratic n-lation O (./')
= 0.

Then values of
./;

which satisfy H (./'')= correspond to one and

only one set of ratios of ./. wliicli satisfy <u ('./)=(). Therefore ./'

can be taken as coordinates of a point in space and are the most

general pentuspherical coordinates.

The sphere V^r, =

becomes the sphere V",'-'','
= "i

and the condition ?;('')= for a special sphere goes into another

quadrat ic condit ion 1 1
(</' )

= (| .

The point at inlinity takes the new coordinates
'(,, 4- i'l,-,, and the

condition that a sphere should be a plane is that its equation should

be satisfied by these coordinates.

The coordinates
,

of ^117 furm a special case of these general

coordinates. \\V >hall not. however, pursue the treatment of the

'_!viirral case, but >hall restriet ourselves to the case in which the

ti\e eoi'trdinate spheres are orthogonal. In thi< case no sphere can

be -pn-ial. since, it it were, its center would lie on each of the other
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four split-res, and then- would lit- four orthogonal spheres through

a coiiiinoii point, which is obviously al>surtl.

\\'t- niav consider that cadi of the equations nf the coordinate

spheres has heeii put in the normal form, >o that \\'e have, in ( 1 ),

Then, bv (
o ), ^ 1 JO, the substitution is expressed bv the equations

pj'[--
'''<

(4)
/,

where N is the power of the point j\ with respect to the sphere
.)

./' = 0, and / is t he radius of ./'= <> since the factor is the

( 'onset pit-lit Iv \ve have for ./'' the tninlamcntal relation

./'[-+ XH J\.~ + .r(- f ./'"-, 0, (S ,

and the condition lor a special sphere is

15 y ( 1
), $ 11 s

, the ratlins /' nf the sphere.'-'
(l

i
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where, if anv sphere .i\
-" is a plane, the corresponding coordinate

./
;
'. is /ero, as in fact happens when rk

= ~s..

The equation ./^
4- /./'.

== tor the locus at infinity becomes,

from ( in ) and (11).

where, a'_
r ain, if anv coordinate sphere is a plane the corresponding

term vanishes I rom ( 1 ;>> ).

It is now easy to see that the formula (
ti ). vj 1 1 7, for distance

4. ., ^ 4. _r

V

so that the equation of a sphere with center
//,

and radius / \-

Identifying this with "^
'/'./,'

"

We have p<i\
=

//',+

]-"roin (11). with ( >
)
and ( ."> ).

v '

,

S'~''i
XT//!

;=-,-

(115)

(17)

(18)

( 1 ! )

I'>\- si|iiarinu
r (17). adding, and i-cducin^ hy (

*
). (

1 <
s

). and

< T.t ), we obtain the following formulas for the radius and the

center of the sphere ( 1 ii
)

: _ ,

/ ii"
2

V

r ,-*<!,
vi/, -

</, 7
-

/',

""
/'.

The formulas ot
fj

1 1
s are oiilv special ea>es ot these

EXERCISES

1 . 1'p iVe the I'elal '.' 'Ii "V L'.

v,/,,.
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122. The linear transformation. ('onsidera linear transformation

>''! ""', I ''l
+ ' f

,J-''j+ ",.;'': + ",l-'4 + ' l
i:, '':,' < 1

)

in which the determinant
-i,,.

does not vanish and l>v which the

fniidanicntal relation o>(./-)-=0 is invariant. Then tin- relation

;y(
,f )

_-. (I is also invariant.

'1 he relations (1) define a one-to-one transformation of space

1>\' which a nolispeeial sphere i^'oes into a non>pecial splicrc and a

special sphere into a special sphere. There are two tvpes to he

di>t in^tiished.

I. Trim*) "Tiii'it tons f>ij irlifli tin' />'i/
!>'>////

lit i/itiiut/i /,< uii'ii rut nt .

Iv such a t ranst'oi'inat ion planes are transformed into planes and.

consequently, straight lines into straight lines. Since the trans-

formation is analvtie it is a coilineat ion.

Point spheres ai'e transformed into point spheres; therefore,

expressed in ('artesian coordinates, the transformation is one hv

which minimum cones <_n> intu minimum cones, and consequently
the circle at intinitv is invariant. Hence the transformation is a

met rical t raiisformat ion.

( 'onversclv, anv metrical transformation mav he e\preed as a

linear transformation of pentaspherical coiirdinates. This is easih"

seen hv use of the .special coordinates of > 117 and is consequently
true for the general coordinates,

Hence '/ lutriir t r<i nxt'nrnnitin <>t'
jn'nfil*j>/n'i'{f<tl

cin'iri li/mti x
/-_//

/r/iii'/i tin' / -ill
jm'tiit

nt iiifunti/ /x i ni-iiri'i nt /> a ///, trc'iil t r<i iixt'"rimit i"n,

itii'l fn i'i i'*it i/.

II. Ti'dtiftfui'/iHitl'inx I*'/ i/'hii-li llir r'lil ji'iint
til (iilinilii ix i/"/ ///>'!-

I'inif. Ainoii^' the>c transformations are the fni'i-/'m"ii#. I hat an

inversion mav he I'eprcsentetl actually 1)\ a linear t ran.-tormat ion

of peiitaspherii-al coi'inlinates i-- evident from the example in the

coi'/rdmates ^, vj 1 1 7. t<
/.-<t

p?,
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Consider now the general case of a real transformation by which

the real point at intiiiitv / is transformed into a real point J. and

tlu 1 same point .1. or another point J', is transformed into /.

Sinee the transformation is real .1 cannot he at inlinitv. Let this

transformation be 7' ami let .S' be an inversion with ./ as the center

of inversion. Then the product .s"/' leaves / invariant and is there-

fore a metrical transformation, .'/. Therefore A"/' = M ; whence

7'=N 'J/. I Jut N ' = .S'. Therefore 7'=.S'.J7. llciice

Anif />/(/ tritnxfurnmtiun of
pfttt<ti<j>}icri<-<il

<>, </'/<////< it, 'a li/ //7//<7< tin'

/lit/ [i"int tit infinity ix >i"t incii/'Kiitt ix citht'i' tin iiit'i'mivn, <>r (//<'

l>r.,,lii<'f
i

if tin titi'f/'xiit/t mi'J <i met ri'-iil tr<tnxfi>i'in<tti>n.

This does not exhaust all cases of imaginary transformations.

\\'e may obviously have imaginary transformations of the metrical

tvjie or inversions from imaginary points, so that the above theorems

hold for transformations by which the real point at inlinitv is trans-

formed into itself or into any finite point. Transformations, however,

by which the real point at infinity is transformed into an imaginary

point at infinity are of a different type. An example of such a

transformation is ,
' - ' - ~ '

PJ: .,'>

p.r'.----

'

x^
-

-i.r..
- -.,'

PJ =
-'\

We shall close this section \vith the theorem, important in subse-

quent work: If t1t>- ruilrdiit'itt' xi/st, /// in nrt/i'ii/innil tJi<- 1r<tnxf<,rin<t-

fi"/t
f.rfi/;

-x.v /
/-// rJuinifimj /// >///// '_-/'

i>nc f f/i>- rnHril.iitnti-x ix (tit

in I'f/'x/nit an tfi,' I'n/'i'i
-!<jiii/t'l/>i</

i'<i<ii-ii t n<it,'
,vy;/'/V.

l-'or let the si'j;n of j'
k

be changed. Then points on the sphere
n are unchanged, and any sjihere ortlio^onal to ./, n is trans-

formed into it>elf. This characteri/.es an inversion un .r
k

= n.

EXERCISES

1. Trove the laM theorem aiiah't ic;illv. u--iiit,
r the turmulas of ; ll'l.

12. Trove thai the jiroduet of Jive inversions with respect to live
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123. Relation between pentaspherical and Cartesian coordinates.

If we take the axes <>.\\ } .
< >'/. Used in xj 117 In define the speeial-

i/.ed pent asjilit-i'ical coordinates as the axes also ol a set ol ( 'artesian

coordinates, it is obvious that \\ e have, for real points,

p.'\
= '" -f //" + ?~ ~ 1 = '' + if -f Z" - < ~,

/j.r,= L'./- L'./Y,

/>.'',
= -

//
-

//' ( 1 )

rt ,.__) -5 _ ) -. t-

This establishi'S in the lirst plaee a one-to-one eorre.vpondenee

between real [mints in the two systems. It may be used also to

define the eon'opoiideiiee between the inia^iiiarv and infinite points

introduced into each system. There exists, however, no reason

why such points introduced into one system should always ha\e

corresponding points in the other. As a matter of fact a failure of

correspondence of such points does exist.

The ( 'artesian points on t he imaginary circle at infinity fail to exist

in pentaspherical coordinates since values of ./, //. .;, / \\ hich sat i>t \ the

relations /"4-//"+ r^ ", / = ^ive j'
}

: ./-..:./.: .>'
t

: r,= : : ; : n.

iiut anv ('artesian point at infinity not on the imaginary circle

corresponds in pentaspherieal eoi'irdinates to the real point at

i 11 1 i it i i v 1 : : : : /.

( )n the other hand, we ha\e in pentaspherical ^voinetrv inui^inarv

points at in tin it v satisfying t he re la t ions j\*+ .r: + ./'~ 0,
./^ -f- /./._

=
i),

in ( 'artesian uvoinet rv since no values of ./ :

//
: z : t in

(
1 ) ^ix'e them.

This failure in the correspondence is of importance if one wi>hes

to pass from one system to the other. 'I hey are ol 110 significance-,

howevel', as lon^ as one operates exclusivulv in one >\>tem.

The general pentaspherical coi'irtlinates are connected \\iih ('ar-

tesian eoi'irdinates b\- equations ol the form

p.r[
=

(
't,, -f '''(,-, ) ( J

-
"

-f if f 2" ) -f -
'i. ._..''

+ - ", // f - ",,~
-

< "
i ''", )

124. Pencils, bundles, and complexes of spheres. If
^/',' :

" ;"ul

^
l>j\

= are two spheres, ihe eijiiation

V
( f \/, )r . (I

( 1 )
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represents a sphere through all points common to the two spheres

and intersecting neither in any other point. Such spheres together

form a
j

m-il of spheres.

.1 fi ii'-U ''
ttji/nTex <-<>nt<tinx one <tn<J onl// one

]>l<tn<'
unlexx it <'"ii-

.v/.v/.v i ntirflii "f l>I<iiti
x.

This follows from the t'm-t that the condition that e([iiatioii ( 1 )

should he satisfied l>y the coordinates of the real point at infinity

consists of an equation of the first decree in X, unless both

? <i j: = and "N /./ = are satisfied by those coordinates. In the
' ^t

latter ease all the spheres (1 ) are planes.

A //!/// lit'
Hjthi'n'if

ci>nt<tinx ttc</ dtnl onli/ ttco ajiecidl uphere* ( which

nini/ ?>f ri'<</, i/inii/i inii'if, '.// coincident) unlt'tsy /( I'vnxtxtx entirely <>f

XJH i'iii/ npnefi'K.

The condition that (1) represents a special sphere is

;(</ + X/-
)
=

T/(//) + X?; ( <i, I
) + \~jj (/<)-=<>,

which determines t wo dist inet or equal values of X unless ?/(,/)= (),

'/(M -- - (|
.

?/ ( ". f')=0. The latter case occurs when the two spheres
N

(/_./_
= (I, N /,./-|=z are special spheres with the center of each on

the other.

The theorems of
J^
111 and others analogous to those of ^ tli* are

easily proved by the student.

If V,
/_./ 0,

^,I>fi\= 0,
'5yV*'i-

== are three spheres not in the

same pencil, the equation

represents a bundle of spheres as in ^ 1 1 L*. The bundle contains

a Mildly infinite set of plant's and a singly infinite set of special

sjiheres. The relations between orthogonal pencils and bundles

found in ^ 1 1 '1 are easily verified here.

If V,/.,- _ : 0. V/v 7
',-^ - V'V, 0, V /,.'',

= are four spheres

not belonging to the same bundle, the equation

V(", -f X//.4- fn' t
+ V(l

t )J\= <>

represents a complex of spheres. It consists of spheres orthogonal

In a base sphere and contains a doubly infinite set of planes and a

doubly infinite set of special sphere.-. 'I he centers ol the latter

form the base sphere.
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EXERCISES

1. Prove that the angle under which a sphere cuts any sphere of a

pencil is determined l>y the angle under which it cuts two spheivs of

the pencil.

2. Prove that among the spheres of a pencil there is ahvavs one

which cuts a given sphere orthogonally.

3. Prove that the angle under which a sphere cuts anv sphere of a

bundle is determined l>y the angles under which it cuts three spheres
of the bundle.

4. Determine a sphere orthogonal to lour given spheres.

5. Determine a sphere cutt ing live given spheres under given angles.

\\heii is the problem indeterminate'.'

125. Tangent circles and spheres. Let //,. .?,, /,
be anv three

points o'iven in orthogonal pentasplicric-al coordinates, and consider

the ^nations ps.= 1/^X2.+ pf;. (1)

In order that J\ should be the eoi'irdinates of a point it is neees-

sarv and sut'tieieiit that

^ (//,.+ X.r
t
+ K )-- 0. (l>;

Since N
_,/--. ii, "V :-=<>, ^/^. I), equation ('!) reduces to

.IX + /> + r^/^ = (J, (o)

\\here A - ^ .//,.=',,
11= V.'//,, (' V

;'/,-

Therefore (
1 ) inav be written

.IX

P->\
:

//,-+5Ur, ,,',-, ',-' < 4 '

/ -p-
i x

or
p.t\ /.'//, 4- (

'
'//, + /'X

-
. I/

1

,
) X + <

'-r,X'

J
.

(
">

)

'I his represents a one-dinieiiMonal extent ot points. An\ sphere

which contains the three points //^ *.. f
t

\\ill also contain all the

points ./ . and anv point ./, belongs to all the spheres t liroii^h /^, <(
fr

Therefoi'c ( t) re[)re>eiits a ciri-li', including the special case of a

straight line.

Any e<|iiatioii /( , ./-.,, ./'.. ./'

(

, ./. )
- -- 0, (l!)

where^ is a lioiun^i'licuits jiolviminial ot the /t{\\ decree, represents

a surface. To !'md where it i-> cut hv an\ circle substitute from

( >
) nit o ( (1

). There res 11 It s an e<|iiat ion ot derive l! /< ill X. so t hat

the surface i> cut 1>\ an\ i -uvle in 'In iioints.
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If ('artesian coordinates are substituted for
.;-,

in ((>) the equation

is of the 'J//th order and of the form

where HI is u homogeneous polyiioiniul ot decree k not containing

( ./-"-f- _//-+,r) as a factor. The surface therefore contains the circle

at inlinitv and as an /Mold curve it n
t

-*- 0. In the ('artesian

geometry the surface is cut l>y any c-irele in 4 // points, hut the cir-

cular points at infinity count - n times and do not appear in the

tet racvdical ^'eonietrv.

The equation in X is

,, //.,. ,//.,, // (
) + \H" !V '

(
<

;//_ -f- /;2 .

-
. j/

(

u. 7

Xo\v if // is on the surface, then /'( //)
= and V //

(

= (), the
~* "

'
//,

latter hecause /'is hoino^tMieous. Thei'ctore one root ot (7) is /ero.

Two roots will he /.en> it, in addition to
// i being

1 on the surlai-e,

\\'e ha\ e

which is the same a>

It this condition is satistied hv the t\\o jioints ?_
and

/,,
the circle

( 1 ) is tangent to the surface (
ti

> at
//,.

The condition is certainly

met it r
(

and t
t

ai'e hoth oil the same sphel'e of the [icllcil

Anv sphere of this pencil has accordingly the propertv that an\'

plane section of it through //,
is a circle tangent to the surface ( t!

).

Therefore ( '.'
) fi/'fi'Xi'tltK />fi-i/ nf t,(Hi/rnt X/Jirrrx

I" tin xu/'fitn;

It
'

u. all circles throii'di // meet the surlace in two coinci-
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126. Cyclides in pentaspherical coordinates. ( 'onsider the surface

From l'J:> ;uul llti this is a cyclide. We have shown that if the

cvdide has singular {mints, it is tin- inverse of a quadra- surface.

We shall therefore limit ourselves here to the general i-ase in which

the singular points do not exist. Since, then, the equations =
'.'/,

have no common solution, it is necessary and suHieient that the

discriminant <t
ik

does not vanish.

It is a theorem of algebra that in this case the quadratic form

mav he reduced bv a linear substitution to the form

(where <\
'^-

), at the same time that the fundamental relation

a)
( ./ ) is

j-- +.>::+ x- + .>- + j-- = 0. ('.})

We shall therefore assume that the etjuation of the eyclide is in

the form ( '2
)
and that the coordinates are orthogonal.

From equation (~2) it is obvious that the equation of th*- surface

is not altered bv eluuiging the sign of any one of the coordinates j-.

Hut this operation is equivalent to inversion on the sphere ./,--<!.

1 It-nee

The {>eiicil of tangent spheres to the cvdide at any point tt
t

is,

bv ^ i-j:..

^('V+\)//i
j-.= 0. (4)

Hence, ill order that a given sphere

should be tangent to ( - ), it is necessary and sut'licieiit to determine

/\ and // so that

ii V 0. V "'
o. (7)

( f- X )'

J

_

I \
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of which the first is a consequence of the last two. The last two

express the fact that the equation

y~^- = (8)Av+X

lias equal roots. This imposes a condition to be satisfied in order

that (
">

) should be tangent to (-).

When X has been determined from these equations, equations (0)

determine //,
in general without ambiguity. Exceptions occur if

X c
k , where i-

k is any one of the coefficients of (-). In that case

we have in (li) a
k
= 0, and yk cannot be determined from (>). How-

ever, if the other four coordinates
//,

are determined, t/k
has two

values of opposite sign but equal absolute value, determined from

the fundamental relation ('>), The corresponding sphere (">) is

orthogonal to./-
;
.= and tangent to the cyclide at two points which

are inverse with respect to j-
k 0.

The value of X may be taken arbitrarily as <-
k ; whence <i

k
= 0.

The values of <t
t (i^k) must then be determined from (7) with

\=ck . Each of the tirst two equations contain an indetermi-

nate term. The last equation becomes

"' = <> (,>*) (9)
i

'

.

'

t

The coetlicients of (
f>

) satisfy two equations, therefore, and the

spheres form a family of spheres which is not linear. In this family

a sphere can be found which is tangent to the cyclide at any

given point. For it X=
<\.,

and
//,

is any point on the cvclide,

equation (ii) will determine <t
t
, and the <//s will satisfy ('.<). as

has been shown. The spheres of the family therefore envelop

the cyclide.

There are five such families of spheres, since X may be any one

of the live coefficients <.. Hence

Tin i/i'/irfil '//'//'/-
/*

<'n>'<-lf><-<l lii fii-,' j'uniilif'x lit'
,vy*/^'/vx,

f

lniily i-i.inxixttinj lit'
8pln'rt> vrthiH/vtuil tn /H' J thi- (iff c'nofiUn

//t7v,v anil f<ini/i'/if t<> tin- stirfai-c lit tu'u
fioi/itx.

\\'e >hall sliow that t)t>- i-cntcr* <>f thf
i<pJtt-rt'n

<.>t' fti-Jt .sv/vVx //
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Take, for example, the series for which X = < and <i o. If

// c

are the coordinates of the center of a sphere of the series hv ('J (

),

_fv

and
(iic
=

whence

and equation (0) becomes

y _< .V>
-

.y,

^r1 r, ( -, <

whieli is the equation of the locus of the centers of the spheres of

the family under consideration.

By (4), llM, equation (10) may be written

yOV-'SV^o. (11)

and, finally, if X
;

.
and

.s'j
are expressed in Cartesian coordinates,

equation (11) is of the second degree, and the theorem is proved.

We mav sum up in the following theorem:

Tit'' </i'ntT>/7 i-i/i'llijf until Lc f/f/n ritti'J In fir,' inti/x iix f/t,'
,'n>->'!jh>

nf

a x/i/n /> aiilijfi't
t<> f//t' f'i'o fii/tififiiniK t//'/f it xhnnltl I"- i>rth"</ii>i'tl to <t

fi.n'il Hither? mill t}mt ft* ,-,-nt,T xjmitld // on ,i
ij>nttln'<'

xnrt'iiC''.

A surface which is its own inverse with respect to a sphere .S'

is called tinnllutimntw with respect to \ \\hirh is called the .///-<-

f n'.r
.v/'//ov.

Such a sui'face is enveloped l>v a familv of spheres

orthogonal to N and doiihlv tangent to the surface. Fur at anv

point /' of the surface thei'e is a sphere tangent to the surface and

orthogonal to \ !>v inversion this sphere is unchanged. It is

therefore tangent to the surface at /''. the inver>e of /'.

The surface on which the centers of these enveloping spheres

of the auallamatic sui'face lie is called the i/i-t'i-r< nt.
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EXERCISES

1. If <} t
. is (iiu- of tlic five (left-rents of the eyelide. and \ the corre-

sponding directrix sphere, prove that, the tetrahedron whose vertices

are the centers of the other tive directrices is self-conjugate, both with

respect to <4 and with respect to St .

2. Prove that on the eyelide there are ten families of circles, two

families corresponding to each ot the live modes of generating the

eyelide.

3. The focal curve of any surface being defined as the locus of the

centers of point spheres which are doubly tangent to the surface, prove

that the eyelide has live focal curves, each being a sphero-quadric formed

bv the intersection of a deferent by the corresponding directrix sphere.
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PART IV. GEOMETRY OF FOUR AND HIGHER

DIMENSIONS

(TIAPTKR XVII

LINE COORDINATES IN THREE-DIMENSIONAL SPACE

127. The Pliicker coordinates. The straight lines in spare form a

simple example of a four-dimensional extent, since a line is deter-

mined lv four coordinates. In fact, the equations of a line can

in general be put in the form

*= + ,,

//
= KZ + a,

and the quantities (V, *,
/?,

a
) mav he taken as the coordinates of

the line. .More symmetry is obtained, however, by the following

device.

From ('([nations (1 )
we have

>// .v.r = rrr p*, ('2 )

and we mav place rv px = ?;. ( >
)

thus obtaining live coordinates connected bv a quadratic relation.

If (./'. //',
z

) and (./", //", z"
) are anv points on the line (1 ). we

mav casilv compute

/: x: p\ rr:
i/

: } --. jc -./":_//'
-

>/" :.r"z' .r'z" : i/"z' -i/'z":j''i/" j''t/':zz",

and it is the ratios on the right-hand side of this equation which

were taken bv 1'liieker as the coordinates of a line.

These coordinates, however, form onlv a special case, arising

from the use of ('artesian coordinates, of more general coordinates

obtained bv the u.se of quadriplaiuu' coordinates. \Ve proceed to

obtain these coordinates independently of the work (list done.

'I he posit ion of a st raight line is tixed bv t wo points ( ./ : ./-.,:./.,: r )

and (
//

t
://.,: //.,: //, ). It should lie possible, therefore, to take as coor-

dinates of the line sonic (unctions ol the coordinates ot these t \\ o

jiomts. Furtiierinore, .since anv two points \\lmse coordinates are
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X.r + fiv mav be used to define the same line as is defined bv .r

and //,. the coordinates of the line must be invariant with respect

to the subst it ut ions

p.r[
=

X^r -)-
/MJ//,, p;i\

- \. ,r -f //.,//,..

Simple expressions fulfilling these conditions are the ratios of

determinants of the form
'

' ' '

. \Ve will, accordingly, consider
i \

J
\- "i

the expressions

Pit -r^t- Wi-

Since p it
=

/,,.,
there are six of these quantities; namelv,

n .r n -
./'

/ 14 1-4 4-

;>.,,= .'y/.
.

which are connected bv the relation

,- I

//, //, //, ,'/ 4

It is obvious that to any straight line corresponds one and onlv

one set of ratios of the quantities j> ik
.

As we have seen, the ratios of
y^,

art 1

independent of the partic-

ular points of the line used to form
/>,,..

If in particular we take

one point as the point :
./'., :./..:./, in which the line cuts the plane

'',

" " '

VVt ' ha\~c
/',., ''..'/,

, /' r
.=

.''.//,, /',.
.r

( '/,
: whence

.r,: .r.: ./'

4

-

/',.,
:

/'I.T
:
/'u - ^ s '",U

r '" ;i similar manner the points in

which the line meets the other coordinate planes. \vc have, as the

points of intersection wit h the four planes, the following four points :

: /'. : )>... :
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The condition that these four jioints should lie oil a straight

lino is exact Iv the relat ion (
I ).

From ( >
)

it follows that a set of ratios
/',,

can belong to only

one line and that these ratios niav liave anv value consistent

with (4).

llelice flu' r<iti<>x <'f /',..
'until Li' /<//,-,// r/.s

1

/// fnilrilhi'ttfx (' <i xti-iin/hf

1<H'\ illlil f/n' /'I'/ilf/u/l /,,///',,,/ ,1 Hfl'ttt'i//lf lilli- ilii'l itfi I'nfiri) UHltt'H IX "III
1

f" >mi'. 'I hese coordinates are called /'///'<// fin'lriJtnnti'x.

()t course it a straight line lies completely in one ot the coor-

dinate
j

i lanes, one ot the sets of ratios in ( ">
) becomes indeterminate.

This cannot happen, however, for more than t\\o of the sets at the

same time, and the other two sets, together with ( \ ). determine j^,.

128. Dualistic definition. A straight line may lie defined bv the

intersection ot two planes //. and ?v, lieasoiiinnp as in }'2~ \\c are

led to place

(1 )

\\'hich are connected by the relation

To any straight line corresjionds one ratio set of ratios ot
y, ;

.

and the four planes through the straight line and the vertices ot

the tetrahedron of reference have the lane coordinates

Therefore, to any set of values of the six quantities </,
which

satisfy the relation (_'), there corresponds one and oiil\ one line

\\ it h t he coordinates
,/

, .

The relation between the quantities />
. and

y,.
is simple. I- r<>m

(''>) I he plane
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passes through the line
7,,.

If
./',

and
// x

are two points on the line

we have, besides equation (4), the equation

7l-.-//-;+7l:>/'..+ 7l4.'/4
= - (-

;>)

Fn>m ( \ ) and (
">

) we have

Similarly, wo may show that

7l2 _ 71? _ 7l4 _ 7:H __ 7.2 = 7ca.

/':.4 /Y; /'- /'.^ /'l3 /',,

We may, accordingly, use only one set of (juantities

and may interpret in point or plane coordinates at pleasure.

129. Intersecting lines. Two straight linos, one determined, by
the points .r and

j/ i

and the other by the points j\ and
//|,

inter-

sect when the four points lie in the same plane, and only then.

The necessary and sul'ticient condition for this is

r, .r, ./ , .r
4 ,'

.'/i ,'/j .'/:. ,'/i :0
./; ./;

./-; ./;

whi.'h is the same as

Alsn. dual isticallv, twn lines, nne dcMermined by the planes >i
t

and ', and the other liv the planes // and
/'|,

intersect when the



LINK COORDINATES

four planes pass through tin 1 same point, and only thru. Tl

necessary and sufficient condition for this is

which is the same as

Either condition (1) or (-) is in terms of /,,,

which is more compactly written as

where M (>, ;'") is the polar of the quadratic expression <-/>(/).

130. General line coordinates, ('onsider any si\ <|iiantitirs j-
t

de-

lined as linear combinations of the six quantities /-,,. That is, let

P-
ri= f

*ii
ru+ '*i-Sr.;+

' r
-:;''i.+ ",'';.+ ">:,''*>+ ,,<'^' ' 1

)

with the condition that the determinant of the coefficients n
it.\

does not vanish. Then the relation between the quantities j> ti
and

.r. is one-to-one, and j\ may be used as the eoiu'dinates ot a line.

liv the substitution (1) the fundamental relation <o(r)
-

() Ljoes

into a quadratic relation of the form

|(.;-)^:V,/ i;
.r.,-

t
.- 0. (^..= ,^) (-')

In fact, bv a pro[)ei'
choice ot the coefficients in ( I ). the function

( ./
) may be any quadratic form ot nonviinishiutl discriminant and,

in [tarticular, mav lie a sum ot the six squares ./. 'I lie jtroot ot

this mav be i^i\'en as a ^enerali/.atiou ot the similar problem in

space or mav be found in treatises on algebra.

P>v the substitution (1 ) t he polar r/>
( /, /' ) ^oes into the jmlar

To prove this let r
t>
and /', reju'esent t \\ o sets of values of the coor-

dinates /'^
and let

.i\
and ./' represent the corresponding \alues ot the

coordinates .r.; then
/,,. -f- X/*', corresponds to

/^.-j- \./'|
lor all values oi X.

Therefi ire ro ( / -f X/-' ) g(.r + X.r' ),

or co {/')+ '2 \(D
( /-, /'

) -f \'a> (/') f (.r )+ '2\%( .1 . ./' ) f X'f ( ./

'

).
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By equating like powers of \ we have

">('. >*')
= (' -'')

Hence the r<ifi"x "/ tin// sj/steiH <>f si.r
tji/<intitii'n ,r., hound

/<//
a

Jionioi/fni'i'un fjmidmh'c relation (./)= ///' nonvanixhiny dinerimi-

niinf, ttitij/
l>e ftikt'ii tin t/n' ctiiirdinaten 'if a lint' in

njitii-e
/;; .sv/r'// ^/

///iin tier t/nif f//f
*'<{u<iti'>n ( ./, ./' ) in tin' //fvr.v.\v//y/ and sufficient

rnntlition for ffif intersection of tin' tiro linen .r (///</ ./'.

( )t particular importance are coordinates due to Klein, to

which we shall refer as Klein coordinates. These are obtained by
the substitution

The fundamental relation is then

>T + .'\f 4- .'V + ^
J + .>; + .'V

- 0,

and the condition for the intersection of two lines is

''i.
v

i
+ J

'^'i + -'V/3+ '

4// i
+

-''.v'A-,
+

'V,/
/

--,

( '

131. Pencils and bundles of lines. /. //' <t. <m<l ?>. nrc t/r<> inter-

nt'i-fin;/ 1/tn'n. tJten
p.r,

=
'/, + X/. /x '/ ////*'

<//'
^//c f'n<'il dt'teriinnrd />//

n^ mill l>r itii'l <i)iij Jini' at the pencil >/>'i// f>e *<>
expressed.

The hypotheses are

(Vr)=0, f(A)=0, |(/r, /,)
=

Then:

1.
.r,

are the coi'irdinatcs of a straight line, since

<.') = ^( " 4- \r>
)
= (")+ 2 \( '/. A

> -f x'
J

|( /
>
- o.

J. The line ./. lies in the plane of ti
:

and l
t

and passes through

their point of intersection. To prove this let </ be anv line cuttingI I I
. t

1
!

both it
t

and /- . That is. <l. is either a line through the intersection

of //
i

and A- or a line in the plane of ti. and 1^. Then (<t, </) = (),

and f ( A, '/
)
= o. Therefore
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Hence
.i\

intersects anv an<l nil of the lines </
t

and therefore lies

in the plane of <i
t

and /<
(

and passes through their intersection.

\. '1'he value of X may le so taken as to give anv line of the

pencil determined Itv <t
:

and
/<,.

To prove this let /' he any point

of the pencil except its vertex, and let
//,

he a line through 1' but

not in the plane of <i
t
and 1^.

We can determine X so that

(./. /0 = (". /' >-f xf <'* //>= o.

Hence
.r,

intersects /^ : and since /^ has oiilv the point /' in the

plain- of d
t

and /<
f

, and
./_

lies in that plane, j\ passes through /'and

is anv line of the pencil. The theorem is completely proved.

//. //' */
(

, /',.
it/nl <. <!/>' th/'i'i' lini'x t/tfi'tii'/t (/if ml/tit' j">int f>nt >/"t

t't'luHt/t/li/ t" thi' 8<IHH' fit'Hi'tl, t/tt'tl p.t\
----- il

t

-\- \f'
t
-f- /J.i\

/.">' '/ //Hi' tfti'"tii/h

f/n 1 mi/in'
j'l'int.

it/ni iiiti/ lint' t/i/'t>i(t//l t/ulf j/mt ///''//
If .v/

>'<'j>/'t'xr/itt'<l,

Uv hypothecs, f (/O = 0, f (A) = 0, f (') = 0, |(</, /) = 0, ^(/M')= 0,

( r, ")= ( >- Tlu-ii :

1.
./,

are the coordinates ot some line, since ^(./')
= (|

.

^. Any line \\hich cuts all three lines <r, //.. and jv cuts ./-
(

. I'or,

if %(. c/)=0, |(/., (7)=0, and |(<-, t/)=0, then |(r. ,/)=|(,n?)

-f X^ (/>.</)+ fj.%( <\ ,J
)
=. 0. Therefore

./_ passes tlirougli the inter-

section ot n
t

,
/'

t

. f'
t
.

'}. N'alues of X and
fj.
may be so detcrmine(l that j\ may cut

an\' two lines </
t

and
//_

\\hich do not cut the lines </
t

.
/-_,

and c
t
. \\ e

ha\ e, in fact, to determine X and
fj.

from the two equations

<</, //) + x^(/.. //) + M?C'- //)
-

<>,

(.f, //)+ Xf (/', /o-f /"f ('% /<)= 0.

'1 he theorem is therefore proved.

///. // ",. /',,
'//c/ . /r/T f//^/ tltrii' liniK in tin' x<i//ti-

j>l<(n>-
/'( //"f

l'<'l"ii</< it*/ /" tin' xiintt'
jn'ni'il.

tin H
p-t\-~~ '', +- XA

t
+ /^'',

/^ '' ////' /// ^/c'

yitiHi'
fi/iUti',

((HI/ iin/i 1 1 n>' m tin 1

I'tit/ii- uiiii/ In' *" r>
fi/'tfi'/t

ti<l.

The proof is the same as for theorem II.

A roiitigurutioii consisting ot all lines tlirough the same point

is called ;i I'H/iilli of lines. A eoiiiigunition consisting of all lines

in a plain- is a
///-///

of lines. l>v the use of line eoJ'irdinates \\ e

do not distinguish between a bundle and a plane of lines. In tact

each coiiliguratioii consists of a doiihlv infinite set ot line-- each ot

\\ hieh intersects all of the others.
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EXERCISES

1. Trove that the cross ratio of the four points in which a straight

line meets the tour planes of any tetrahedron is equal to the cross

ratio of the four planes through the line and the vertices of the

tetrahedron.

'J. Trove that there are t \vo and only two lines which intersect four

L,
r ivcii lines in general position.

3. Trove that if the coordinates of anv live lines satisfy the six

equations .

*"''i + ML + '-', + P'
S
', + <T f

,

= ()
'

the five lines intersect each of two fixed lines.

4. Show that if the coordinates of anv four lines satisfy the six

equations
A./-, 4- it-!/, + v-

t + px,
= 0,

any line which intersects three of them intersects the fourth, and hence

the lines are four generators of a quadric surface.

5. Show that if the coordinates of three lines are connected by the

six eiiuatioii>
A./', + fj.i/1 + w, = 0,

anv line which intersects two of them intersects the third. Thence

deduce that the lines are three lines of a pencil.

132. Complexes, congruences, series. A lute
c</i/>!e.r is a three-

dimensional extent of lilies. It may be, lint is not necessarily,

defined by a single equation which is satisfied by the coordinates

of the lines of the complex. The <>/'/>'/ of a complex is the num-

ber of its lines which lie in an arbitrary plane and pass through
an arbitrary point of the plane: that is, it is the number of the

lines of the complex which belong to an arbitrary pencil.

A lini' I'nii'jnii'iii'i' is a two-dimensional extent of lines. It may
lie defined by two simultaneous equations in line coordinates and

is then composed of lines common to two complexes. The "/</</

of a congruence is the number of its lines which pass through an

arbitrary point : its /-A/xx is the number of its lines which lie in an

arbitrary plane.

A line writ-* is a one-dimensional extent of lines. It may be

defined by three simultaneous equations in line coordinates. It

then coiisi>ts of lines common to three complexes. The "/-<Av of a

scries is the number of its lines which intersect an arbitrary line.
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An equation .^'(
/

'

1

< ''., ''.
''., -'V '',) "<

where /' is a homogeneous polvnomiul of tin- /ah decree in j ,

defines a line complex of tin- //th order. Let <<
t

and f>
t

lie an\ two

lixed intersecting lines. Then <i
t
-\- >/-, is, bv thei >rein I, s; 1 '> 1 , a line

of the pencil defined hv <t
i

and f>
t

, and this line will belong to the

complex ( 1
) when X satisties the equation

/( -/!+ \f>
r tf.-f X/<.,. f/..-f- X/-., <^-f

X/<
4

. (/.+ X/'.. </
t

. -(- X/
v )= 0,

which is of the //th decree in X.

From the ahove it follows that through anv lixt-d point of space

^oes a conti^ui'at ion of lines such that n of these lines lie in each

plane through the lixed point. Since the relation l>et\veen the

coordinates of the fixed point and those of anv point on a line

of the complex is an analytic one, derived from ( 1 ), it follows

that <tn>/ ji'nnt <>f *//'-,'
As- tin' t'ffti.r <>f it i'<>tn' / nth -//,/,/ fnrin<-<{

I'll liitf* '// tin' C"IH
i'!f.r.

Also if we consider a lixed plane, through e\er\ point of it e;o

// lines of the complex. Since, as before, we have to do with an

analvtic equation, we infer that in nni/ j>/<(/tf
t//>- Hm-a -./' -r cm^L.r

t'/ti'i'/i.'ji
<t i-u />'> i

>f tin- ntlt i-litx*.

A simple example of a line complex is that which is composed
of all lines which intersect a lixed line. For if ./ are the coordi-

nates of a fixed line .1, the condition that a line r should intersect

A is, liv $ l:>o,
- s

( /. ./)
= <, < _ )

which is a linear equation. Hence this complex is of the first

order. In fact through an arbhrarv point in an arlutrarv plane

iroes obviously only one line intersect in^ . I. Throiiu'li a fixed point

.!/ >_roe> a pencil of liiie>: nanieh, the lines through .17 in the plane

determined liv M and .1. '1'his is a cone of the !ir.-t ordei'. In an\

plain- //( u'oes a pencil of lines; namcK, the lines through the point

in \\liich /// interx-cts ./. The>e form a line extent ol the fust cla.-s.

Another example of a line complex is one of second order

defined bv the eijualion

/'i. + /
/
;, + /'n-f-/'-, + /'^ + /'-j

- (l
- (:{)

wliich, expressed in point coordinates, is

(./,// ./
,//

i

)- 4 (.',// .'
//. )'" f <',//! -',.'

i
l

]

'
' '

.

(/
,

'

;' '"

-f ( ./ // ./' // I' \- ( .1 'I .1 <l )"'-- H. ( 1 )
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This is not the equation of a surface, since it contains two sets

of point coordinates. It", however, the coordinates
//,

are fixed,

(4) becomes the point equation ot the cone of second order formed

bv lines of the complex through //,.

If, dualisticallv, we express equation (

'

) in plane coordinates
,

and i\ and hold r
t

fixed, we obtain a plane extent of second class

in M
(

which is intersected by the plane r_= const, in a line extent

enveloping a curve of second class.

Through an arbitrary point in an arbitrary plane L,
ro two lines

of the complex (
> ).

An example of a line congruence is that of lines intersecting

two iixed lines. It is represented by two simultaneous equations

similar to (-). It is ot the lirst order, since through anv point

but one line can be passed intersecting the two Iixed lines. It is

of second class, since in a fixed plane only one line can be drawn

intersecting the two fixed lines.

Another example of a line congruence consists of all lines through

a point. This is of first order and /.ero class. Still another example
consists of all lines in a plane. This is of /.ero order and first class.

An example ot a line series is thai of lines which intersect three

fixed lines and is represented by three linear equations of the

form (-). Such lines are one family of generators on a surface of

second order ( 9tJ). The series is of second order, since anv line

in space meets two lines of the series.

133. The linear line complex. The equation

a
f

/'

i

-f- ''...''., + "..-'' , + <i
,./',
+ '<..''. -f- n

t

.j-
f
= 0. ( 1 )

where
./,

are general line coordinates, defines a linear line complex.

An example of such a complex is, as we have seen, that which is

((imposed of lilies cutting a fixed line. Such a complex we call a

xfH'i-ittl
linfiir Inn-

I'mnjilfjr
< >r, more concisely, simply a

.sy-<v,// <-//<y/./.

'fhe nece.-sarv and suilicient condition that (1 ) should represent a

special complex is that the equation ( 1
) should be equivalent to

< '-.
// ,
=

;

that is, that pn t

-
( 'J

)
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Equations ('2) can he solved for
//,

since the discriminant of (
'>

)

does not vanish ( sj 1 :><>). The results of the solution substituted

in (
;>>

) n'ive a relation <>t the lorm

where i/(n) is a homogeneous tjuadratic polynomial in <i
t

.

\Ve sum up as follows :

7. , 1 xiH'cinl ItlH'tti'
t'<i>/ijt/i'.i'

/x 1'innimxt'd <//' ittrat</Jit li/tt'x //'///'//

iiifi'/'fti'i'l i> fl./'f'i/ ///ii
1

I'ltlli'il trtf (ij'ix at tin' cnmiilfJ', A li/ii'ii/' ii/K'i-

fi'i/i ( 1
) i/i'fitti'* ii

Nfn'ci'ttl i'"in[>l,'.r U'lu'ii <tml "iilij u'/n'n flu- roi-jficirnts

d
t xdtixt// tin'

(j)nn?t'(ttia 1'ijimtiun (4).

.More in detail, let

Then ('([nations ( '2 ) are

from which, together with (')), we have

n it +".,//., + <i..//..+ <*// + (i. n. -f- "
. '/. " (7)

l'"rom (
ii

) and ( 7 ) we obtain

,

(i
,

.VI ;, t

where J
iA

is the c-ofaetor of (/
ijt

.
in the expan>ion of /> </ ^ '.

Then =A n n i
+ .l .,.,+ , I ,,r, + .1

en

/>

>/ .

P
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We may sum this up in the following theorem:

//. Tlii' ((x'irdinafcx 'if tin 1 a.rix <>f the cmnple.r (
1 ) irhcn it in xpecial

are If Klein coordinates <tr<' iixea
1

, the c'H'ira'inatex /if the a.i~ix <>f <i

f<t
i

xpe''/iil en//ip/e.r
/t/'i' tlif coefficients m flic eipiatioii />f tin' complex.

Returning to the general linear complex (1) (special or non-

special), consider any point /'. It' a
t

,
/>,,

and <-
t

are any three lines

through /' not in the same plane, then (theorem II, lol) any
line through /' has coordinates ",-H X/^-f- /j.e, and this line belongs

to the complex when

Kijtiation (X) is satisfied for all values of X and
fj.

if the three

lines <i
t

, //., and r
(

l)clono- to the eomplex. Otherwise, assuming
that f. does not belong to the complex, we may solve ( S) for /z

and write the coi'n-dinates of the point ,<,'
;
in the form

where (f' and
!>[

are two delinitely defined lines through /', and X

is arbitrary. This proves the following theorem:

///. Through (in// arbitrary innt tn XJHIO' </i>cx <i pencil <>f linen f

th>'
i''i///i>/('./'

unlt'KX in an exceptional imonoT (til line* thruwjli tin' jminf

bt'lnwj tn t)u' cn/npli'.r.

Tlie analysis would be the same if the three lines <r, !>., and <.

\vere taken as three lines in a itlane, but not through the same
I O

point (theorem III, ^lol). Hence

IV. In iini/ arbitrary plane in ,vy/<r I/ex <i pencil t>f liiifx <>f ///

rnniph'j' littlest tn an exceptional manner aU linex "f f/n- plane lin<j
t" t/ie

eo/nplej'.

To complete the information given bv these two theorems we

>hall prove the two following:

V. If ill! f/'nex
tlu-'illijll dill/ n/ii' paint /' ae/a,i,/ fu tin 1 f" I/I

/'li'.r,
t/te

enniplt'j- ix sperm! miJ tli>' point I' I/ex mi the a.rix <f the
e<>///p/e.r.

Let all lines through /' (l''ig. :'>*>) lie lines of the complex. Take

A, a hue in*! belonging to the complex, ;md let (
t

> ami A' be two
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points of It. Through (
{
> goes, by theorem III, a pencil of lines of

the complex of which l'(
t
> is evidently one and // is not. Similarly,

through A' goes a pencil of lines of the complex of which A'/' is

one and // is not. These two pencils lie in different planes, for if

they lay in the same plane the line

// would lie in both pencils and

be a line ol the complex, contrary

to hypothesis. The planes of the

pencils intersect in a line which

contains /'. Call it c, and let S be

anv point on <.

The line SI' belongs to the com-

plex, since, bv hypothesis, all lines

through /' are lines of the complex.

The line .S'(
(

> belongs to the com-

plex, since it lies in the plane of the pencil with the vertex (,> and

passes through (
t
>. Similarly, the line A'A' belongs to the complex.

Therefore we have, through* the point .S', three lines of the

complex which are not eoplanar, since c and It are not in the

same plane. Hence, bv theorem III, all lines through S belong to

the complex. Hut >>' is anv point

intersect ' form a complex, the

theorem is proved.

VI. If nil HiK'x <>f j>l<ut>'
/<'-

/"//// /'/ the
CiDHplt'JC,

till'
COIHplt'J'

is
XJK't'Utl

'lltd tin-
pliliti' IKIXXI'X

through tin' a.iix of the
n>nt/il>'.r.

Let all lines of a plain- in

(Fig. -

r
>7) belong to the com-

plex. Take //, anv line not of

t he ci
uii[ilcx, ami let

'/
and / lie

two planes through //, intersect-

in /// in the lines m and inr.

>f c, ami since all lines which

Kit:. .".7

1 n the plane Y lies. b\ theorem 1 \ .

a pencil of lines of the complex ol which
//<y

is one and h is not.

Similarly, in the plane / lies a pencil of lines of the complex

ot which //// is one and // is not. These pencils have different

veriice-s, for otherwise they would contain h. Let < be the line
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connecting tin- vertices ( -, of course, lies in >/t ). Take a, any plane

through ' intersecting '/
in the line y* and r in the line rx.

Then c is a line of the complex, since by hypothesis any line in

/// belongs to the complex. Also yx and rx belong to the complex,

since each is a line of a pencil which has been shown to be com-

posed of lines of the complex. The three lines do not pass through
the same point because

<////
and nn have been shown to intersect <

in different points.

Therefore, bv theorem I\'. all lines in .s- belong to the complex,
and since x was any plane through ', all lines which intersect c

belong to the complex, and the theorem is proved.

134. Conjugate lines. Two lines are said to be foiijut/atc, or /v-

i-'>l>r<i<-iil }i<>l<irx,
with respect to a line complex when every line of

the complex which intersects one of the two lines intersects the

other also. Let the equation of the complex in Klein coordinates be

and let
//,

and z
t

be the coordinates of any two lines. The condi-

tions that a line j; intersect
//,

and z
i

are respectively

y j + a- +
-
v

' + ' J + //-' + .

= '

*' ( - ^

\Ve seek the condition that any line
.r,

which satisfies (1) and ('2)

will satisfy ( :! ). This condition is that a quantity X shall be found

such that
pzyt+Xit;. (t =1, '2, :>, 4, ;>, ) (4)

lint
//,

and
^_ both satisfy the fundamental relation

1 herctore, from (4), X= _^ "J, ( f,

V<r
*-v '

-2'VAand (4) becomes pz i/- '-'
(/., (

;

which define the coordinates .r of the conjugate line of any line
>/,-

l'"i'om (.)) follows at once the theorem:

/. .I/'// ///* //'/N '/
ti/H'/Ui' <">(/ i/i/iif''

i 'Hill
Ji

/f./
1

.
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If the lino
//,- l>elongs to the complex, then ^",//,

= " and pz,= '/,-

Hence

//. Am/ Illti' i>1 ll
HilUHflt't'lH/ I'minili'X IK itx nll'il I''/// />/,//! f i'.

If the complex is special, N^/j
! =0. Therefore, unless also

"V 'f ,-//,= 0, X x anil pz,= ii,. Ilence

///. 77/i' '/.//* "/' (/
vjn'i"/'<i/ cvntplfj' /> ///<

fiinj'ttifitff'
>>(' <>/i// I'm,' ii"t

Iii'l'iti'l'mi/ f" th>' ><>,,
//>/i'.r.

If the complex is special and the line
//, belongs to it, A. is

indeterminate. I Icnce

7V. .1 (tin' i

if it
xjit'i'iitl

i-'iiii
fiji-.r

Ji'ix n ifi-f, ruii/i/it-' <'nj m/nti'.

The aliove theorems mav also lie proved easilv hv purely geo-

metric methods.

If two lines have coordinates // 1

and
,r,

u'hich satisfy t^j nations ( ti),

then any values of ./. which satisfy ( i' ) and (.'))will also satisfy (1).

I Icnce

V. If f"'" ff>i'x iifi' ctiHJHi/titt'
iritli

rrspi'i-t
In ,i << 1 1 it

j
i] ,-.r, inn/ Inn

H'Jiii'h i'tift'rfii'1'fit fii'f/i '

>f tJtt'i/i
?H*ftiHf/x

f" tin' <'ni
i>li'.r.

I-'rom this theorem or from the relations ( (I
) t'ollnus at once:

VI. Tn'n luii'x fu// / iii/iifi
1 /////! /,

'.ijit'i-f
fu ft

ttunxpi'i'idl
i'<>/ii

[ilt'.i
iln >i"f

inft'rxi'rf.

\\'e have seen (theorem IV. ^ loo) that in anv plane /// there is

a iinit|iie point /' which is the vertex of the pencil of complex
lines in />/. Similarly, through anv point /' '_nies a plane /// which

contains the pencil ot complex lines through /'. \\ hen a point and

plane are so related, the point is called the /// of the plane,

and the plane is called the j>ul,ir
of the point.

It'// and // are two conjugate lines with respect to a complex,

and /' is anv point on
//.

the pencil of lines from /' to poinis

mi // is made up of complex lines l>v theorem \ . Ilence tollo\v

the theorems:

vii. 'rii>' /"J,ir fihtuc
i if ,i

/,.,;///
/' ,,,, ,i /;//,

_,/
/x ///, j.inn- ,1.1,1--

itii it'll I'll /' ilifl tit,'
i-niijlli/illt

till, It. .l.v /' l/l'il'rX itli'llij '! t)t>
fin/iir

Illll/ll tll/'l/S llln.llt //.

VIII. Tli'' /'"/< ni' int'i ill, n/,' n> ////"//'/// ii />'//' '/ /'> /// htfi /'xfi'ft'i'ii "''

in ii'ith ///< i'un i ui/<it
i' ///!> h. A* in fa nix iiliniit

,/
it*

ji>J,'
frifi-fxi's Ii.
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135. Complexes in point coordinates. It is interesting and instruc-

tive to consider the linear complex with the use of point coordinates.

A linear equation in general line coordinates

^".r i (1)

is equivalent to a linear equation

in
/',,. coordinates, and this, a^ain, can be expressed as a bilinear

equation in point coordinates:

If in equation (o) we place //, equal to constants, the equation

becomes that of a plane ni of which
//_

is the pole.

The plane coordinates of this plane are

P"l= 'V' 2
+ V/,+ ",,/V

P" 8
=

-",=//! + <Vs- V/4'
4

P"
;.= -" 13.'/i-'V'2

+ 'W
P^=- VVi+'V/2-'V/3

<

and to each point //, corresponds a unique plane unless

-
", a "M

- ^
it a < i

i .1 : i

-a a a
11 fj .i

that is, unless (
'',.,''.,-(-

"
1; ",.,

+ "i,''-, ^" "

I)iit '/ /' 4- '/
/"',.,

4- "
U ". V1

' s ' n(> form which
?/ ( 't > takes for the p l:

coi'u'dinates. Hence we have a verification of the fact that in a

nonspecial complex anv plane has a unique pole.

Let us take two conjugate lines as the ed^es All (./=<">, .r,= 0),

and <
'

I > (./. (. ./
n

)
of t he t ct rahedroii of reference fur t he point

coordinates. I Ins can alwavs lie done bv a collincation \\'lm-h

obviously amounts tn a linear sulstitut ion of the line coordinates.

If :"://: //
is a point /'on All. its polar plane is, bv (')),
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This plane must pass throii'di <'!> for all values of >/ and >/
\~

Hence a.^=ct, = a <t
.

= 0, and the line complex reiluce.s to

where neither ot the enettieiellts call In- /ero if the complex i

nonspecial.

It is possible to make the ratio <',,: </ equal tn 1 l>v a colline

ation of >pace. To see tliN. note that it we place

th

Consider no\v a special complex, and let its axis lie taken as

the line .1/1 ( j- 0, ./=<>). the line eoiirdinates of \\hidi are

y.,._,
=

y,.,= /' 14
=

/' 4
.=

/'-..
= " 'I" ne < >()i)dition that a line >houid inter-

sect this line is, h (!),>{ 1 -'.,

\Ve mav sum up in the following theorem

136. Complexes in Cartesian coordinates. We >hall now considt r

the properties and equations nf Hue complexes \\ith the u>e "t

('artesian coordinates .r : // : 2 : /. 1>\' which the plane at intinity is

unique and metrical properties come into evidence.

For special complexes we have two cases, according as the axis

i< or is not at inlinitv. In the former case the linev \\-hich inter-

sect it ai'e parallel to a tixed plane, llem-e
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Consider a nonspecial complex. In the plane at inlinitv is a

unique point I, the pole ot tin 1

plane. The lines of space which

pass through I form a set of parallel lines not belonging to the

complex. These are called the diameters of the complex. Each

diameter is conjugate to a line at infinity, since the conjugate to a

diameter must meet all the pencil of lines of the complex whose

vertex is I. Conversely, any line at inlinitv not through I has a

diameter as its conjugate. In other words, thr polar plane* of point*

ot) a diameter are parallel planes, and the poles oj an
if peneil <if paral-

lel plant-* lie on a diameter.

Consider now the pencil of parallel planes formed bv planes

which are perpendicular to the diameters. Their poles lie in a

diameter which is unique. Therefore there i* in eai'h non*/>ecial

i'o)/tple.r
a uniiiue diameter, called the a.ri*, f/'hich ha* the properf// of

fieini/ perpendicular to the polar plane* of all point* in if.

Referring to (4), !>;>, if we replace r:.ro :.r:.r bv .r://:z:f,

the pole of the plane at infinity is given bv the equations

a i/
4- a z + a f 0,

!-' l:l 14

a .r -f- a 2 a f

12 23 !_'

- a ./ a ii + a f = 0,
in 23' .:(

which have the solution

./://: z: f =
,.,:

- a
r ,: a^: 0. (1 )

Any line through the point (1) is therefore a diameter, and if

( ./ , //p
z

)
is any finite point of space, the equation of the diameter

through it is
./

.r, = //-//, = z-~\
a a a

2'.', is 12

The polar plane of ( .r
r //,, z^)

is. by ( I ), 1 :
)-">,

The line (1) is perpendicular to the plane ( L! >

Consequently, if
(J\, // f ^ ) in ('.}) ai'e i-ejdaced liy xai'ialdc

roiinlinates ( j\ //,
z ). e<|uation ( >

) becomes the ('artesian et/nafion

of ///*' '/.r/x of the complex.
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Let us take this axis us the axis of z. Thru, from (1), ".,,-<>.

a 0, and, from (
:

>), since the origin of coordinates is on the axis,

<j = 0, (t = (). The equation of the complex is then

"/'+ "*/'*=' <*>

which agrees with (">). ^j
1 ; >~>.

In ('artesian coordinates equation ( -t ) is

,///' ./'// -f /,-( Z )-=<, (;'))

which associates to any point (./', //'.
.:' ) its polar plane.

From (
.")

) it is ohvious that the polar plane of /'(./'', //',
z'

)

contains the line
.///' --./'_// (>, 2 = 2', which is the line through

/' perpendicular to the axis. The normal to the plane makes with

where / is the distance from /' to the axis. This leads to the

following result :

Tlii' [xil'tr pi, nn' /if unif IK,
hit /' <''>nfiiinH tli<> I'm,' f/<r<>ni//> /'

nei'pftuUculttr t" flit' ttj'tx. If I' ix mi fin' <U'>K, ?/x i>n]nr jilnnf ix
j>>r-

nt >/<//<'ii/<ir tu tin 1

i/.rfx. Ax /' ri'i'i'il.t'x frmii t/- <i.r/x <i/n/i>/
<t //'//,

ni>riii'>i<UcuIi()" f" it, tJn' ii'in/in]
jiliiin'

tiinix tifm)if thix
pi'rni'ndii'ul<(i',

tli,' i/u'i'cfi'>n iitn/ iiuKiinit nf r'itiiti"ii
ili'/n ii'liiti/ njmn flu' x/<//> mi<l ///

fit/Hi' <>f Ic. If I' n/oi'cK ///n</ ,t //'//,'
jxit'iit/,'/

/" /// <t.rfv, ifx
i>i,1,tr

jilillli'
IH'it'i X n,l/-illl'l t" //*'//.

Anv line of a complex may lie defined liy a point ( ./. >/. ,~ ) and

its neighboring point (./ + </.>,// f '///.
: \-<h). If in (>) we place

./' j- -\- i/.i\ if'
1=

if -f- <///, z -- z + '/r, we have

./'/// i/il.r
-- Idh 0, (

ti
)

which mav he called the i///r.-/v////W
^.^/.iti^it

<<>'///,'
fnwfift-.r.

Filiation (it) is of the tvpe called noninte^rahle, in the sense

1 ha I no solution of t he form /
( ./ . v. -'- (J

)

~ " can 1
> found tor it .

It is satisfied, however, in the first place, l>v straight lines who>e

eiiuations arc
Z f, //

- in.r. ( ( )

In the second place, on anv c\lindei- with the equation

./' 4- >r <r (
S

)

mav he found curves who<e direction at anv point satieties (
(

i >.
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For the direction of any curve on (S) satisties the equation

.r</.r -f /////
= 0,

and this equation combined with (
i>

) <^ives tin 1 solution

(^
'2 TTlf

which are the equations of helixes with the pitch
"-

k

It appears from the preceding that any tangent, line to a helix

of the form (
'.' ) is a straight line of the complex. \Ve shall now

prove, conversely, that any line of the complex, excepting only

the lines (7), is tangent to such a helix.

Since z is assumed not to he constant, we may take the equation

of any line not in the form (7) as

with the condition In }n k, which is necessary and sufficient

in order that equations (1) should satisfy (>).

The distance of a point ( ./'

r // r
z

l
) on (1) from n/, is

.

in" + n~
) zf + -2 ( >nl> -f n/> ) ^ + /--' -f /'

2
.

It is easily computed that this distance is a minimum when

////< 4- >'/'

i

The minimum distance is , which we shall take as n in

N )li~-\- >l~

the equations of the helix ('.*) The direction of the helix at the

point (.7-j, // r
-=

1

) is

'/./ : </// : <lz ~
i/

i

:

.1^
: m : : ] .

\ his is the direction of t lie line ( 1 " ). and our proposition is proved.
\\ e have, therefore, the following theorem:
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137. The bilinear equation in point coordinates. The equation

^ ",*',//<
(J < 1 ,

is the most general equation which is linear in each of the two

sets of point coordinates (
./^ :./:./.,: r

(

) and (//,://:// :
// ).

IJy means of (1) a definite plane is associated to each point

//,.
its equation being obtained by holding >i

:

constant in
(

1 j.

Similarly, to each point .r is associated a definite plane.

In this book we have met two important examples of equation (1 ).

I- "k,
=

''.< Equation (1) then associates to each point v, it--

polar plane with respect to the quadrie surface

^",,^,
= 0.

The pole does not in general lie in its polar plane. Exceptions
occur only when the pole is on the qnadrie.

II. a
ti dfri whence ^

i(
=(l. Equation (1) associates to each

point //.
its polar [)lane with respect to the line complex

2<w*=o.
The point //, always lies in its polar plane. This association

of point and plane forms a null *j/*fi'>ti, mentioned in ^ 10:2, and here

connected with the line complex.

EXERCISES

3. Prove t liat a complex is determined hv 1 \vn pnnx ot conjugate lines

4. Prove that if a line descrihes a plane pencil its conjiiLrate ;ds

descrihcs a plane pencil, and if a line describes a qnadrie surface K-

con jugate does al>o.

5. Prove tliat a complex ('or null svstent ) is in general delerniined h

any three points and t heir ]>>lar planes.

G. Prove that anv two pairs of |io!ai' lines lie mi tin- same quadri
surface.
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138. The linear line congruence. Two simultaneous linear equa-

tions in line coordinates,

define a congruence. Evidently equations (1) are satisfied by all

lines common to two linear complexes. Hut all lines which belong

to the two complexes defined by equations (1) belong also to

all complexes of the pencil

and the congruence can be defined by ;uiv t\\'o complexes obtained

l>v j^ivin^ X two values in ('2).

A complex defined by (-) is special when

that is, when 7; (
n

) 4- - X?; (/r, tf ) 4- >-'-';/ ( /3)
= 0.

(:->)

In general equation (>) has two distinct roots. Hence we have

the theorem :

The two tixfd lines are called the *///vr/Y/'Vx ol the congruence.

The directrices are evident conjugate lines with respect to any

nonspecial complex defined by equation (-).

If the roots of equation (:>) are eijuah the congruence has onlv

one directrix and is called a
n^i'i-'nil >,,,/,/,><< //<<. This congruence

consists of lines which intersect the directrix and also belong to

a nonspecial complex. It is clear that the directrix must be a

line of this nonspecial complex, for otherwise it would have a

conjugate line and the congruence would be nonspecial. Hence

,/
ttj>,-i-i,il i-nni/riii'/n'i' 1'n/ixt'x/x nl' I'nn-x /////>// itifi'/'si-i-f <i fi.n'i/ liiii' <nnl

Ktir/i tJnit
tjirniiijli mi// [>n

hit "/' tin 1

f/.ri'i/ Inn' //"rx <i
/><'>!,//

/,(' ,'<>)>-

i/rni in-,' ////f.v, f//,' t/.i'i'il li/n 1

fn-ftn/ hi nil riisi-s <i Ihn' <>f fin-
//*//<//.

As the vci'tex of the pencil moves alonu; the directrix, the plane

of the pencil turns about the directrix.

\\ e have seen that a nonspecial congruence mav be defined by
its directrices. If the directrices intersect, the congruence separates
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into two sets of lines, one beiii'_
r

; dl lines in the plane of the direc-

trices (a congruence of lir>t order and zero da>s ). and the other

bein^ all lines through the point of intellect imi of the directrices

(a congruence of /.ero order and lirst class ).

\\'hen the directrices do not intersect, the congruence is one of

lirst order and tir.st cla.

139. The cylindroid. \\'e have seen that every linear complex has

an axis. In a pencil ot linear complexes ^i\eii bv equation ( '2 }.

$]'}*, there are, therefore, /.
' axes which form a surface called

a </////><//"<</. \Ve mav tind the equation of the cylindroid in the

following manner :

Let us take as the axis <>/ the line which is perpendicular to

the directrices of the two special complexes of the pencil, as

the origin n the point haltwav between the t\\o directrices. a> the

plane X<>\ the plane parallel to the two directrices, and as <>.\

and <>Y the lines in this plane which bisect the angles between

the two directrices. That is, we have so chosen the axes ot refer-

ences that the equations of the two directrices of the special

complexes of the pencil are

I/
nt.r = 0, .: = ',

(
1 i

and
// + iiu' = (l

< '% (
- )

respectively.

The I'lueker coordinates of the line (1 ). which may be deter-

mined by the points ( u, I), ,) and ( 1. m, /), arc

and the special complex \\ith this axis K therefore, bv ( 1 ). ^ 1 1".'.

Similarly, the coi'irdinates of ( _! ) are

/'',.'

-

0, )>''
2} =/; //,-j

-1, /-.,- -///. /','
- in. l'\= (\

and the special complex with this axis is

The pencil of complexes is therefore
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My ('))'
l : * n'' tin 1

equations of the axis of any complex of the

pencil are

(1 X ) /// : ( 1 4- X
)
tits _ -(] + X ) z_+(

1 M
-

( 1 f X) -(1- X )> /1

- ( 1 - x ) "<>' -O + X) y

u

l-x
\vllich reduce to i/

-
>iu;

1 -f- X

[(
1
- X )//< + (

1 4- X)'-']
* =

( 1 - X-) ( 1 4- in'
1

) c.

It' we eliminate X from these equations, we have

which is the required equation of the cylindroid.

The equations slmw that the surface is a cnhic surface with <)/

as a double line. All lines on the surface are perpendicular to OZ,

and in any plane perpendicular to <>Z there are two lines on the

surface which are distinct, coincident, or imaginary according as

the distance of the plane from (> is less than, equal to, or greater

(1 -f in')'-
than

_ ///

\Ve may put the equation of the cylindroid in another form. We
shall denote by - <i the angle between the directrices of the special

complexes of the pencil, by the angle which any straight line

on the cylindroid makes with < L\\ and by / the distance of that

line from <>. Then /// tana, and m = tan 0.

. 1 + X
Lquation (:>) then becomes

-sn -

sin - a

140. The linear line series. Consider three independent linear

f(l UiltlOIlS x^ V^ > V^
2/V',

= ( J' tf,-
r

,

= {}
< ,7^=- (1)

'I liese equations are satisfied by the coordinates of lines which

are common to the three complexes defined by the individual

equations in (1 ) and define a line .sv/'/Vx. Any line of the series

also belongs to each complex of the set given by the equation

V( A.I 4- ^.f j.7 ,.,- i). ( -2)
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and any three linearly independent equations formed from ( '_' > In

giving to A, /z. and v definite yalues determine the same line series

that is determined liy ( '2 ).

A complex of the type ( '_' ) is special when

// ( \n + /ZP
1 + ^7 )

= A'// (H)+ /z-';/ ( p
1

) -f l'~i] ( 7 ) -f- - A/z;y ( a. p' )

-f !_> /zr// ( p\ 7) + -2 i'\>j ( 7, a
)
= 0. (

:'.
)

There are a singly infinite numlier of solutions ot equation <
:'>

>

in the ratios A : p. : v. Hence the lines -which are defined Ky equa-

tioiis (1) intersect an infinite numlter of straight lines, the axes

of the special complexes defined ly (
'_'

) and (
'> ). These lines are

called the i///vr//vV, x.

The arrangement of the directrices depends upon the nature of

equation ('>) In studying that equation we may temporarily in-

terpret A : /z : i' as homogeneous point coordinates of a point in a

plane and classify equation (
:

)
as in vj :>.">.

Let us place
!'/(") '/ ( ''. p) '/

(

/> =
>) (n. fi) i] ( tf ) jj(

j

'/ (
a - 7 ) '/ ( /^i 7 ) '/

1

CASK I. I> : <J. This is the general case. Kqiiatioii ('}), inter-

preted as an equation in point coordinates A : /z : v, is that of a conic

without singular points. To any point on this conic corresponds a

special complex of the type ( "_' ) whose axis is a directrix of the

series (1). To simplify our equations \ve shall assume that the

coordinates
.<\

are Klein coordinates. Then (ly theorem II. ^ 1 :'>>)

if
(
\

i

: ti
]

: i>
{

) and ( A., :
/z.,

: j'
? ) are two solutions of equation (

'2 ),

the axes of the corresponding special complexes, or, in other words,

the corresponding directrices of the series ( 1 ), are A.,'t.+ /z 1
p

)

i

f i'
}y

and \._,n -f- /z.^ (
+ ''-7, .

The condition that tliese t \\ o direetrices intersect is

which is exact 1\ the same as the eomlit ion that each of t he two points

( A
t

: /i : i> ) ami ( A., ://,:;'.) si i oil li I lie on t he polar of t he other \s it h

I'espect to the conic
(

'} ). Thi.^ is illlpossil lie, since each ol the points

lies on t he conic. It t'ollou's from this t hat //< f/i'n ,//', <///'> x <//?> /'M <-t.

I-'roin this it will al>o follou that im t//' ////IN /'/// ;///-// xirim

t/ttffxi-i-t, tor it the\ did each directrix mu>t cither lie in their



plane or pass through tlu'ir common point, and some of the

directrices \vould intersect.

The lines of the series (1). on the one hand, and their direc-

trices. on the other, torm. therefore, t\vo tanniies ot lines such that

no two lines ot the same tamilv intersect. Inn each line ot one

family intersects ail line.-* of the other. This surest s the two fam-

ilie-* of generators on a (jiiadric surface. That the configuration

is ivalK that of a (jnadrie surface follows trom the theorem that

the locus of lines which intersect three nonintersecting straight

lines is a ijnadric surface (see Kx. i>, p. -\'2~ ).

We sum up in the following words:

III till' </'ll' Till fllKf ( /> --- 0) //,,' ///H'K //'///' 7/ tlt't' I'll/// Hint/ fn tJu'll'

liiti'ir f'niiiiift'j'cx I'l'i'm "ii>' I'liinilii at'
i/i m t'ltfnrx at' <t

ijHiii/t'if
xii rfii'-f.

tin i r ill r, ( i-t'-,K J 'iriiiini/ tin' xii'iiiiilj'tiittli/.

A family of generators of a (jiiadric surface is called a /Y///////N.

CASK II. 1> 0. hut not all the lirst minors are /ero. The curve

of second order detined l>v ('}) reduces to two iiitt'i'secting straight

lines and, liv a linear substitution, can lie reilueed to the form

Xj. = 0.

These are t hree special com-

plexes such that the axes of

the tirst two dd not intersect.

hut the axis of the third inter-

sects each of the axes of the

tirst two. The axes lie. there-

fore, as in Fi'4\ -Vs. The series

consists, therefore, of two peli-
... . . I i

'

. "> s

ells ot lilies : one Ivilig in the

plane ot -/ and <. with its vertex at /''. the point of intersection

ot I, and : the other 1 \in-_;' in the plane of / and '. \\ith its vertex

at /'. the intersection of </ and <-.

CAST: III. l> n. all tin- lir>t minors are /.ero. hut not all the

second minors arc /ero. The conic deiincd !i\ ( :J
) consists of t \\ o

coincident lines. It- equation ma\' he made r" ".
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\\e have thru taken to delhie the series three complexes of

which t\vo arc special with intersecting axes, and the third is non-

special and contains the axis of the other two.

If <i and /> are the two axes of the special complexes, /' their

point of intersection, and /// their common plane, then, since the

nonspeciul complex contains <i and ?>, /' is the pole of m with

respect to that complex. Ilelice the lilies common to the two

complexes torm a pencil ot lines which must be taken double to

preserve the order ot the complex.

( 'ASK I V. The case in which all the second minors of I > \ am-h is

inadmissible, for in that case the three complexes in ( 1 ) arc special

and their axes intersect. Then, from lol, 7,= < l ,+ 'V^< imd the

three equations ( 1
) are not independent.

EXERCISES

Two complexes A,",./',
= and ]5yV, " ;llv Hl Ini-nlutlnn when

rj(n. !}= 0.

1. Prove that it
//

is a line common to two complexes in involution

the correspondence of planes through //,
which can he set up \<\ taking

as corresponding planes the two polar planes of cadi point of
/.

uith

res]ieet to the two complexes, is an involution.

2. Prove that two special complexes are in involution when their

axes intersect.

3. Prove that a special complex is in involution with a noiispecial

complex when tin- axis of the former is a line of the latter.

4. Prove that if two iioiispeeial complexes are in involution there

exist two lines, i/ and //. which are conjugate with respect to the two

and such that the polar planes of an\ point /' are harmonic conjugates
with respect to the t \\ o planes through /' and <i and throiiuli /' and It

respectively, and also such that the poles of anv plane /// uith I'espect

I o the i \\ o complexes are harmonic con ju^ates to t he
j

mi nt s in \\ h;ch ///

meets ,/ and li .

;>. Prove that the six complexes ./ 0. where ./' are Klein coordi-

nates, are two li\ two in involution. Ilencc prove li\ a I raiistormat mn
"t coordinates that there exists an intinile numhei- of siu-li sets ,.( six

coin pic xe> i n ut ual 1 v in ins ol ut ion.

i. Prove that the locllS of Hlles which illtel'SCct three I id 1 1 ! 1 ! e r-eet 1 II
-

1 nies i> a i

jiiai 1 ric surface, \*\ 11^1 ii'j, Plueker coord i nal es and I'liin mat in-_r

one set ot point (Mil il'il mates.
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141. The quadratic line complex. A quadratic line complex is

defined l>v an equation of the form

We shall consider only the genera! case in which the above

equation can be reduced to the form

2'V*7=0, ('-,-") (1)

at the same time that the coordinates J\ are Klein coordinates

satisfyin the fundamental relation

Let us consider any lixeil line y t

of the complex and any linear

complex ^-\

2/Vi-- ' (*)

containing if.. In general the complex (8) will have two lines

through any point /' in common with (1), for /' is at the same

time the vertex of a pencil ot lines of
(

-\
) ami of a cone of lines

of (1 ).

Analytically, we take /', a point on
//,,

and
r_,

anv line of ( > ),

but not of ( 1), through /'. Then anv line of the pencil determined

by (f and r is

pj\
=

//, + \z
t

,

and this line always belongs to (
o ), but belongs to (1) when and

only when _

This i;ivcs in general two values of X, of which one, A. = 0, deter-

mines the line
// f

and the other determines a different line. lint

the two values of \ both become /ero, and the line
// i

is the onlv

line through /' common to ( 1
) and (

-\
) wlien

2'
>

,.^,= 0;

that is, when ^
t

has been chosen as anv line of the linear complex

//; t/iift ''/>' thf
/'"/'// /'f'l/if "f I' H'ttlt

fi'f/n-rf
fu ( 4 ) /.< tdii'/fht t"

th> '>iii
i>l>

J' '-"ii>' "f ( 1 )
<lt /', IvJuTi' I' I* ilitij i>"tnf t/'fttltt'l'i'f lit'

l/
t

.

The complex ( I )
is accordingly called the /</;/' //f l/nnir

m////!/,-./-

/' n . It i< often said that the tangent linear complex contains all
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lines of tlic complex ( 1 ) which ;irc consecutive to
//,,

since any line

with coordinates //,+ <///,
sat islies

(
4 ). The discussion we have given

makes this notion more precise.

More generally we have at
//,

a pencil of tangent linear com-

plexes. For by virtue of (-) the complex (1) may lie written

where
fj.

is any constant, and the tangent linear complex to (">) is

2K + AO .'/,-'.-
" ('')

All these complexes have the same
}
tola r plane at any point /'of

//,.

If//, is not a line of the complex, equation (') defines a pencil

of imhir Itni'iir <<' ni nit'.ft'*.

'I'lie line
//,

is called a xini^ilai' li/u
1 wlieii the tangent linear

coiiijilex (4) is special. The condition for this is

2/7,'/?=0, (7)

which says that <,//,
are the coordinates of a line, the axis of the

tangent complex. At the same time all the complexes ( ti
)
are special

and have t he same ax is.

This axis intersects
//

. since ^\ '///?
= " (because//,, is a line of the

complex), and the intersection ot the two lines is called a ttitu/ulttr

/<"////,
and their plane a tit'ttt/itlnr jilmn'. Anv complex line v, f''

which condititin (7) holds is called a ximjnliir line.

Let /' be a singular point on a singular line
//,,

let z. be anv line

through /', and consider the pencil of lines

The condition that
./'_ belong to (1 )

is

since ^> cjj'f
-- 1

1, because //. is on (
1 ), and N c

i y i

.^
i

=0, because z
i

intersects
(__//.

at /'. Then if z
t

is a line of ( 1 ). all lines of the pencil

(
s

) belong to (1 ).
( )n t he ot her hand, if z

i

is anv line not hulon^injjf

to the complex ( 1 '), tht' line//, is the oiilv line in the plane (///,)

\\hieh belongs to the complex. This makes it evident that <tt <<

MHi/Hftt/' />"//lt
t/li'

fninf'li'.f
I'nili'

Xjilitx Ufi
illtn f //'"

fjitllt' fH'tlfiltl

tllti TKi'i'ti
ii'J

III tin' MHi/ulllt' //Hi'.
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In a similar manner we may take
j>

as a singular plane through
a singular liiu 1

//,,
z

t

, anv line in
/> inU'i'seetiug //,,

and again con-

sider the pencil (v
'
s

). \Vc ohtain again (il), hut the interpretation is

now that it
.:,

is anv complex line in /, there is a pencil of lines in

i> \vith vertex on i/
t

. Consequently in t< Miiifuhti' [iliine
the complex

emi'ie Ki'lifK ii
[>

///t" tn'n
ftfticila

f<> which tin' Kiiii/nttif line tx eninin<i.

\\'e shall now show that (tiuj />///! *</ trfiic/i the
cuniplt'jc

cmie

x[ilitn
int" tii'n pencil* ix il x//i</u/t<r [mint ttml iini/ i>/ti/n-

in which

(/<> I'niinih'.i' i'ii/uf xplita tut (> (/('i>
jit'tictlu

/* <t Ktnifuldr pliuit
1
,

Let ./ lie such a point, and let the two pencils he
</_ -f- \!>

t

ami

(/ + '' . 'I'hell

The tangent complex at </
(

contains ii
f
, l

t

. and c
: hy (1"). Tliere-

t'nre. liv theorem V, ^ 1 '-\'-\, it is special, and the point A lies on its

axis. Hence A is a singular point. The second part of the theorem

is similarly proved.

Now let
'',

and
/'_

he two intersecting complex lines. Then

V, ,',:(), V/;-=0, y<f/,.= U, V, .-::(), V ,./,-=().( 1 ] )- , ^ t S-4 ' ' ' ' ' ^ ' '

It' the pencil ti
t
-f X//

( hi'longs entirely to the complex we have also

We shall fix <i
:

and take as l
t

that line of the pencil whit

intersects a tixed line </ which does not intersect <i .

To determine A
(

we have live equations of which

three are linear and two quadratic. There are there-

!<>re in general lour sets ot values of //
, so that <-/? .1

<in if line /if t lie mill
file.!'

tin re lire in ijem T'il f"iir |

xnn/nliir i>',tiitx.

Let the four points he .1 .1
,. .(..,.!( I'V. .">'. ) and

the four lines lie A', I", I"
1

. I"". Then each of the

planes (
iif>' ). (

-/A
'

), (
,//,'"

). ( nl,"" )
coiitain.s a peiieil

ot lines mid lu-1 ice a second one (list inet or coincident.

Tlh'l'efoiv ////" n i

ili 1 1 ii il line <>n fin cumn/cj' t In re tl/'i t'uiir xi in/nlii r fililin
x.

Since the coi'irdinates of the four lines / sat i>f\' three linear

equations, the lines li.-loiig in general to \\. rr^iilus ( ^ 1 1") and do
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not intersect. Therefore the tour points .1 arc in general distinct,

as are the four planes ('//-) 1" order that two points or planes

should coincide it is necessary that the re^ulus should degenerate,

as in ( 'use II, ^ 1 4<>. The condition tor t his is that the discriminant

of the equation

x-v,r +M-y,/;+-z;-v,-v-f L'x/zVw+i^v^/^+^xy,._,,*=<)

should vanish. P>v virtue ot (11), and the fact that </
t

satisfies ( '2 ),

the ahove equation reduces to

,,-2\or+ -JX/iV,,,/ +- iV']^, '/','/,= 0;

and the condition that its discriminant should vanish is

since V,/
r

,7 =
(I. liv ( 1 :> ).

If this condition is met, ", is a singular line hv the previous

definition, two of the points A , ./, ./.,. ./ coincide into one sin-

gular point on '/
(

, and two ot the singular planes coincide. More

prccisclv, if ./ and ./.,
coincide at .1 the pencils (<if'') and (!>")

form the complex cone at .1. the two lines //" and !>"" intersect on </

(compare ^ 1 1 ( >). and the points .1, ami .1 are the vertices ot the

pencils of complex lines in the plane ('//<"'//"").

142. Singular surface of the quadratic complex. The singular

points and planes are determined l>v the complex line >/ and the

intersecting line '_//, \\hcrcN
,-'-'_//-

<).

\\'e take the pencil

Then
.v_

satisfies the equations

V =V//;= (
.

v ''

., z;
=V >'>/;

= 0;

or, what amounts to the same tiling, the equations

V '

,f
= V '

,-' n. ,|,
-, H\

'

!, + ^r

K([iiation ( 1
)
shows that .? is a singular line ot the complex

V 1

,.-^0. i'2)
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Since tin 1 lines z
{

and belong to thr same pencil as
// ;

'', ~(~ X

and ','/,. ''"' singular points and planes of ('!) are the same as

those of ^'V,
: = " Il(l matter what the value of X. The com-

plexes (
'_'

)
are called rnMni/uliir '"////'/'.rex.

\\'e mav use the cosingular complexes to prove that <>
</////

Inn'

in
sp<t<'t'

In' four xnn/iiliir points of' tin 1

I'oinj'Ii'.t'
^ y~ = 0, aml thi'oinjh

tin if lint' i/o four siinjuliir pining.

Let / he any line in space
1

. We may determine X in (-2) so

that / lies in the complex (-): in tact, this mav l>e dune in four

wavs, since (-) is of the fourth order in X l>y virtue of the relation

V\/-- = 0. Then there will he four singular points of this new com-
~i

'

plex on / hy previous proof, and these points are the same as the

singular points of ^ -yr = 0.

It follows at once that the lorns of the sint/uliir points of it
//n<i<]-

rnfi'' i'wnitlej'2
<-

:

.r~ = /x <i si(.rf<i<'f <>f tin' fourth nri/i-r. <nnl the

enrt'lopt'
of' tin 1

x'nnjulnr plane* is n snrfiii-f of ///, fmo'th fliis*.

Tln'Sf tit'o surfiict's, Jtoii'ci't'i'. ni'i' fht 1

sti/iH' sn rfiii'i'. I''or if two of

the singular points on / coincide, two of the singular planes through

I also coincide. Therefore, if / is tangent to one of the surfaces it

is tangent to the other. Hut / is any line. Thei'efore the two sur-

faces have the same tangent lines and therefore coincide.

This surface, the locus ot the singular points and the envelope
of the singular planes, is called the nin;iuJnr snrf<(<>'.

We shall not pursue further the study of the singular surface.

Its ('artesian equation may he written down !>v first transform-

ing from Klein to IMitcker coordinates and replacing the latter

hv their values in the coordinates of two points (./, _//, ,r) and

(./', //'.
.:' ). Then, if (./', //',

z'
)

is constant, the equation is that

of the complex cone through (./'', //'. ,:'). The condition thai this

cone should degenerate into a pair of planes is the ('artesian equa-

tion of the singular surface. It mav he shown that the Mil-face

has sixteen doiihle points and sixteen douhle tangent planes

and is therefore identical with the interesting surface known as

k uimuer s surface.
'
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EXERCISES

1. Prove that the tangent lines of a fixed quadric surface form a

quadratic complex. Find the singular surface. Note the peculiarities

when the quadric is a sphere.

2. Prove that the lines which intersect the four faces of a fixed tet-

rahedron in points whose cross ratio is constant form a quadratic com-

plex whose equation may be written .

l/',,/'^ + /;
/'i. t /' 4

- + '

'/'u/'^
-

This is the trt,',ij,r<lrnl rin,i/,lf.r.

3. Prove that in a tetrahedral complex all lines through any vertex

or Iving in anv plane of the fixed tetrahedron belong to the complex.
Find the singular surface.

4. Show that lines, each of which meets a pair of corresponding lines

of two protective pencils, form a tetrahedral complex.

5. Show that the lines connecting corresponding points of a collinea-

tion form a tetrahedral complex.

6. If the coordinates of two lines ,r, and
//,

are connected by the

relat ions

p.i\
=

V,, + x

show that
.>, belongs to the complex 5/',3*,"

= and that
//, belongs to

t he cosingular complex

1. If j\ and ./' are two lines of a complex (', and
//-

and
//'

their

corresponding lines, as in Hx. o, of a cosingular complex ( \, prove tin 1

following proposit ions :

( 1 i If
./,

intersects //'. then ./' intersects //,.

( !_' )
If .r, intersects ./' at /', and

//,-
intersects //' at (j, the complex

cone of (' at /' and the complex cone of C' A at (> degenerate into plane

pencils, and to a pencil of either complex corresponds a pencil of

the other.

i
>

i It ,/, intersect s ,/' at /', ill general y, does not intersect >/'. and the

complex cone of (' at /' i-orrcsponds to a regulus of < \. Also the com-

plex conic in the plane of
./,

and ./' corresponds to a re^uliis of <

'

A .

i 1 i Anv t wo lines ,r
t
and ./' of (

' which do not int ersect determine a

cosingular complex f\ in which the two lines ,/
i

and //', corresponding
to r, and ./'. intersect . There are, t he re fore, two ivguli of <' t hn aigh ./,

and ,r\ corresponding to the complex cone and the complex conic of (\

determined 1>\' i/ :

and //'.
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8. Prove that for an algebraic complex ft .r
}

, .r,, r.
(

,
.r^, ./., .'',.)

of

the decree n the singular lines are given liy the equations

/,.=, S (;;;;=o,

and that the singular surface is of degree ~(n 1)-, where singular

line and surface are defined as for the quadratic complex.

143. Pliicker's complex surfaces. In any arbitrarily assumed

plane the lines which belong to a given quadratic complex envelop

a conic. If the plane revolves about a fixed line, the conic describes

a surface called by IMiicker a nu'ritlliin xnrt'<t<r of the complex.

If the plane moves parallel to itself, the conic describes a sur-

face called bv IMiicker an fi^nnt'trinl
xnrf<ifi' of the complex. It is

obvious that an equatorial surface is onlv a particular case of

the meridian surface arising when the line about which the plane

revolves is at infinity. In either case the surface has been called a

It is not difficult to write down the equation of a complex sur-

face. Let the line about which the plane revolves be determined

bv two fixed points, .1 and />', let /' be anv point in space, and let

u
t

and r. be the coordinates of the lines /'./ and /.'/' respectively.

Then the coordinates of anv line of the pencil defined bv /'.I

and /'/.' are
//, -+- X'*,, and this line will belong to the quadratic

complex "V <,./,"
= (| when X satisfies the equation

In general there are two roots of this equation, corresponding to

the geometric fact that in anv plane through a fixed point there

arc onlv two complex lines, the two tangents to the complex conic

in that plane. If. however. /' is on that conic, the roots of (1)

must be equal : t hat is

Now
?/,

involves the point coordinates of .1 and /' lincarlv. and

>. involves in a similar manner the coordinates of /.' and /'. Hence

( '1 ) is of the fourth order in the point coordinates of /'.

From the construction /' is anv point on the complex surface

formed bv the revolving plane about the line .//'. Hence Pli'n'ki'r'n

,', in nl , .r xn /'tiiri'ft ,/,-,' nt ///c fuiirtli H/-I/, r.
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We mav work in the same way with plane coordinates; ilia!

is, we niav define a straight line
l>y the intersection of t \\ u lixed

planes, 't and /^, and take .!/ as anv plane in spare. '1 hen the three

planes fix a point on /, and equation ( ]
) del ermines the two hues

through that point in the plane .!/ which belong to the ipiadratie

complex. Hence, it t he em rd mat es ot M sat 1st v e<
|

nat ii >n ('!). M is

tangent {n the. complex cone through that point mi /. A little

reflection sho\\'S that such a plane is tangent In the ruinplrx siir-

taee formed lv revolving a plane about the line / and that anv

tangent plane tn the complex snrtaee is tangent to a cone o| com-

plex lines \vith its veil ex on /. Hence ( '2 ) is t he cipiat ion in plane

coordinates ot the complex snrtaee. I'herelore <t <<,,//
ji/r.r

xiirt'ufi'

!x <>f tin' fourth 'V'/x.v.

144. The (2, 2) congruence. ( 'onsider the eon^nieiiee detined 1>\

the t\vo eiiiiations

V,,, ..._-o, (1,

\vlneh consists ot lines common to a linear and a Quadratic
i

complex. Through everv point ot space <4~o t\vo lines of the con-

^nience : namely, those common to the pencil of lines of (1 ) and

the complex cone ot (
; >

) through that point. Similarly, in even

plane lie two congruence lines whirl) arc common to the pencil

of ( 1 ) and the ennie of ('2) in that plane. The complex is there-

lore ot second order and second class and is called the ( '_'. '2
)

congruence.

('onsider anv line
_//.

ot the congruence, and /' anv point on it.

Through /'there will i;'o in an exceptional manner oiilv one con-

gruence line, when t he polar plane ot /'with respect to ( 1 ) coincide-*

with the polar plane ot /' with respect to the tangent linear ctnu-

plcx ot ( 2 ) at
//,.

This will occur at two points mi // . This ma\

he seen without Jllialvsis trom the tad that to e\ er\ point on //

ma\ he assoeiat eil t \\ i > planes through >/,
: nanicK . t he

|

mlar
]

ilaiies

with respect to ( 1
) and to the tangent linear complex at '/ . I Iciice

these planes are in a one-to-one correspondence, and there arc two

fixed points ot such a correspondence.

Analytically, if the complex ( 1 ) and the tan^eiil linear complex
ot ( '2 ) have at /'anv line : in common di>tinct from <i . thcv \\ill
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have tlie entire pencil //. 4- X<~,-
in common. The conditions for

this are

This determines a line series which, by ^140, degenerates into

two plane pencils with vertices on
//,..

The points on
//,

with the properties just described are called

the food i><>infa /^ and /', ol
// (

, and the planes of the common

pencil of (1) and the tangent linear complex of (-5) are called

the food />/<i)t<'x f^ and
_/',.

The focal points are often described

as the points in which
//,

is intersected by a consecutive line. The

meaning of this is evident from onr discussion. For at /' and /'

the pencil of lines of
(

1
)

is tangent to the complex cone of ('2), so

that through /' or /', goes onlv one line of the congruence donblv

reckoned.

The locns of the focal points is the, food xnrf<io: It will bo

shown in the next section that the line
// (

is tangent to the focal

surface at each of the points /^
and /',, and that the planes /j

and

_/',
are tangent to the same surface at /', and

/-^ respectivelv.

145. Line congruences in general. A congruence of lines consists

of lines whose coordinates are functions of two independent vari-

ables. For convenience we will return to the coordinates tirst

mentioned in sj Il27 and, writing the equation of a line in the form

will take r, .*>, p, and rr as the coiirdinates of the line. Then, if

/, .?, p. a are functions of two independent variables n. (3, the lines

(
1 ) form a congruence.

Let / be a line of the congruence for which n
n^, $

-

/^ . If we

place
ft =0(), (2)

we arrange the lines into ruled surfaces; and if we further impost?

on
(f)

( n )
the single coiidit ion
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we shall have all ruled surfaces which are formed of lines of the

congruence and which pass through /.

It is desired to know how many of these surfaces are develop-

ables. For this it is necessary and sullicient that there exist a

curve ('In which each ol the lines of the surface are tangent. The

lines of the surface bein^ determined by ( 1 ). ( '1 ), and
(

'} ). the

coi'irdi nates of f are functions ot a. The direction dj".du\dz of ('

iherefore satisfies the equations

tli/
= p</: + z<lp + i/cr,

where (ir =
(

'

+ $( >i )
}

/'r, and similar expressions hold for
\f(( ( p

I/K. '/p. 'la~. ( )n the other hand, the direction of the straight line ( 1
)

is o-ivcn lv
-/./ = /'/-, '///

=
p<l~.,

so that if the straight line and curve are tangent, z must satisfy

the two eijiiations

and thei'efore we must have

,Jp,!x
- ,1,;1<T = 0.

If we replace i//; /x, <!p. i/rr by their values, we have as an equation
for c/H'O one which can be reduced to the form

.!$'( 'i )+ /'<< 'i ) -f ('= <.

I-'rom this (Mjuation witli the initial conditions (
-\

) we determine

two functions (f)(n). Thev have been obtained as necessary con-

ditions for the existence of the developable surface through /, but

it is not difficult to show t hat if (/>('< ) is thus determined, t he devel-

opable sin-face really exists, llciicewe have the theorem:

'/'/i/'"/'t//i ilini Inii' "t <l i-n/ii/ i-lii ili'i' i/i)
t ti'n i/i

rr/'i^xl/i/i
,*>i rtiti'i'X

fn/'/iii'i/ I*/! liiii'x nt ///c i-niniriii'iii'i'x.

Of course it is not impossible that the two surfaces should coin-

cide. but in general they will not. and we shall continue to discuss

the e.'elicral case.

To the two developable surfaces through / belong two curves

(', and i', the cuspidal edsjvs to which the coii! r niciice lines are
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tangent. The points /' and /' , at which / is tangent to C and (',~ 12'
arc the f<><-<il [mint* on /. The locus of the focal points is the focal

Sll rtili'i'.

It is obvious that any line of the congruence is tangent to the

focal surface, for it is tangent to the cuspidal edge of the devel-

opable to which it belongs, and the cuspidal edge lies on the

focal surface.

Let the line / lie tangent to the focal surface at
/-\

and F
n , and

let (' he the cuspidal edge to which / is tangent at /'. Displace /

slightly along C
{

into the position /' tangent to f'
}

at
/','.

The line

/' is tangent to the focal surface again at
/-'J,

and the line /'.,/>'.,' is

a chord of the focal surface. As the point /',' approaches /', along

<\, the chord
/''_,/'!! approaclies a tangent to the focal surface at /',,

and the plane of / and /' therefore approaches a tangent plane to

the focal surface at /',. lint this plane is also the osculating plane

of the curve ('. Hence t/if oftntlatimj plmu
1 f the ruri'f c <tt /' is

fi/tn/f'/if tn tin- fm'iiJ siirt'iii'i' at l'\ t

.

An interesting and important example of a line congruence is

found in the normal lines to any surface, for the normal is fully

determined by the two variables which lix a point of the surface.

Through anv normal go two developable surfaces which cut out

on the given surface two curves which are called litn's of I'Hri'iitHr?.

These curves mav also be defined as curves such that normals to

the given surfaces at two consecutive points intersect, for this is

oiilv one wav of saving that the normals form a developable
siirtace. Through /nti/ ji<n>if f tin' nurftii'f

;/<>
tJn'H t>*'n fines >>('

i-ll //'<!/ II /-,'.

The t \\ o focal points on anv normal are the centers of curvature.

The distance from the focal points to the surface are the principal

radii of curvature, and the focal surface is the surface of centers

of curvature. The studv of these properties belongs properly to

the branch of geonictrv called differential geometry and lies out-

side the plan of this book. We will mention without proof the

important theorem that the lines of curvature are orthogonal.

\Ve shall, however, find room for one more theorem; namely,

that '/ I'li/ii/ri/i'iiff '//' 1 1 tit's //"////<// fa nil,' stirt'ni',' is ii<>nii<il tn ///>

t'liinili/ ut' siiri'i/i-i-s //'///I'll cut nti' ii/i/ii/ ifisfii/n'cs on t'l'i'rif normal

nii'iisiii'Cil ti'ii/n i'iints ut t)n f

first snrtiii'i'.
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Let us write tin- equations ol tlu- normal in tin- lonu

./ -- n + //,

//
- tf -f ////, < 4 )

z = y -(- ///',

when- ( a, /rf, 7 )
is a point of a surface N : /. ///. n llic direct ion cosines

of the normal to A': and / the distance from .s' to a point /' of the

normal. Then
/-+ in- + tr= 1 :

\\'helice I'll + IIKJIII + if/it - 0.

\\'e have also AAt +- nlrf -f //y ~ 0,

since the line is normal to ,s'.

Suppose, now, we displace the normal slight lv. hut hold /constant.

The point /' goes into the point (./ + '/./'.
// + <///,

z + dz), \\here,

from ( 4 ),

That is, the displacement of /' takes place in a direction normal

to the line (4). From this it fnllows that the locus of points at a

normal distance / trom N is another Mirlace cutting each normal

orthogonally, which is the theorem to he proved.

EXERCISES

1. Sho\v that the focal points upon a line / of a congruence can IT

(letiiifil as the ]ioint> at which all ruled surtaees which pav-. through /.

and arc composed of lines of the congruence, are tangent.

2. Show that the siii^ular lines of a i|iiadratic complex form a rou-

'4'i'iience, and that the ^in^ulai
1 surface of the complex is one nappe ot

the local surface of the congruence.

:i. Show that in general there does not exist a surface normal to the

lilies of a congruence, and that the iieeessarx and sullicient coinlition

that such a surl'ace exists is that the two developahle >url'aces through
an\ line ol the coii'j;riie!iee arc oi't ho'-onal.
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4. Show that if a ruled surface is composed of lines of a linear

complex, on anv line of the surface there are two points at which the

tangent plane of the surface is the polar plane of the complex.

5. Consider anv congruence of curves defined l>v

/,(.!', //, S, ,/>)= 0,

/,(./-, //, ,~, a, !,}= 0,

and deline as surfaces of the congruence surfaces formed l>v collecting

tin* congruence curves into surfaces according to anv law. Show that

on anv congruence curve (
'

there i-xists a certain number of focal points
such that all surfaces of the congruence which contain ('are tangent
at these points.

6. Trove that it the curves in Ex. 5 are so assembled as to have an

envelope, the envelope is composed of focal points.



CHAPTER XVIII

SPHERE COORDINATES

146. Elementary sphere coordinates. Another simple example of

;i geometric iigure determined 1>\ four parameters is the sphere.

\Ye mav take the quantities </, i',/",
/ which ti\ the center and

radius of the sphere

( .r
- -/ )- + (//

-
<)- + {2 -/)'

J = r, (
1 )

as the ei lordinates of the sphere, and obtain a four-dimensional

uvoinetrv in which the sphere is the element.

It is more convenient, however, to use the pentaspherieal coor-

dinates .r of a point and take the ratios of the eoet'licients " in

the eiiiiation
"

i'''i
+ Va + 'Vs + 'V -

4
+ V; = (- )

ot a sphere as the sphere coordinates. This is essentially the same

as taking /, <\
_/',

and /. In fact, if
.r,

are the coordinates of sj
1 1 7,

then by (4), Jj
117, t'<iiuition (-) can be written

( rt,
+ i<t. ) ( .r -f //- + r ) + L'

</.,./ + -2 a. ,ii + -2 ,/
(

,r
-

((^ /</.)= 0, (
;i

)

and the connection with (
1

) is obvious.

By J;
111* two spheres are orthogonal \\heii and only when

"A + "/',+ "./',+ "/;

4
+ "A- ' (

4 }

the coordinates .r IKMUJT assumed orthogonal.

Consider now any linear equation

where
<\

arc constants and n
t sphere coordinates. It we deter

a sphere with coi'irdinates <., (
f>

) is the same as ( I), llciice

.1 Ititiii/'
,'ijiiiit

t'in ni i'lfitit'uftti'i/ xfifit'n
1

t'nu'i'tlttitift'x /'i
j>/'i

*t ///.> <i

i'"/ii[il>.i-
,it

>y///,
/VN i-'iHX/xt/ili/ "/' >'/'//' /' N npthtii/iiHitl f" << ti.i'il

Xj>/t>'l't'.

If tl,,- fi.r, ,1
.sy,

//,/-, ,'*
Kftn-tK/

tin
,;,//>/,'./

rt'tixfxtx -/ >y//>
r, x t/ir<>t<

:
//<

th, .;///,, itf' f/u' xi >,,/,// K/i/ifi-i' <!//</ /> ril//i-il 'i xix-fifll t'nn>h'X.
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The word "complex
"

is used in tin- same sense ;is in 1 1 '>, for

it 'i , /^ , 7, c\ arc lour spheres which satistV (4), uny sphere
1 wliieli

siitislies
( {) has the coordinates

<j, -f X^-f M7, -f ",-

('niisider now the two simultaneous equations in sphere

Spheres which satisfv both of these equations belong to two

complexes. Thereloiv //'<< ximii/tdHi'tiux ////><//
i'<jn<itn>n8 in i'l>'//n'n-

tiini ffi/ti'/'i'
ctiti/'iltnxtfH <>/'i' xxtixfifd /<// nji/ti-i'i'x

ichic/i <ir<' nrthuf/nnul

t" dm //.//'(/ ,sy<//c/vx.
These spheres form a bundle, for if a

i% /^, y t

are anv three spheres which satisfy (<>), any sphere satisfying (_!> )

has t he coi'irdi nates n
(

-)- X/d, -)- /xy,.

All spheres which belong to the two complexes in (<i) lu-loiig

to the complex
^v

l 'V / ,d~ X^, '/,-",
( h mid anv t\\'o complexes of the

latter form determine the bundle. Among these complexes there

arc in general two and onlv two special ones, and so we reach

attain the conclusion that a lnnnllt' ol spheres consists in general

ot spheres through two fixed points.

Three linear equations,

determine spheres which are orthogonal to three base spheres.

'1 lie>e spheres form a pencil, since it n and /^ are anv two spheres

satisfying (7), anv >phcre which satisfies (7) has the coordinates

\\Y shall not proceed further with the studv of the elcinciitarv

coordinates, as more interest attaches to the higher coordinates,

defined 111 the next >eet loll.

EXERCISES

1. Consuler i] M .

ipiailratic complex y//^.//^^. = 0. (ti^. ti^.} and

i- polar linear complex of a sphere r
( ,

del'med h\ the equation
^

",'',"/ < I. I t
1 In- del erm ina nt '/, ;

--- 0, sho\\ t hat t o a n\ sphere (^

c"rres]ionds one polar complex, and conversely.

L'. Show that if i-
1

lies in the polar complex of //
. then n\ lies in

the polar complex of / . The t \vo ^pliero / and n\ are >aid to he
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3. Show that tin- pencil tit' spheres defined liy two conjugate spheres
lias in common with the quadratic complex two spheres which are

harmonic conjugates of the tirM two spheres (tlie cross ratio of four

spheres of a pencil is defined as in the case of pencils of planes).

4. Show that the assemblage of all special spheres forms a quadratic

complex. Show that anv two orthogonal spheres are conjugate with

roped to this complex, and that the polar complex oi anv sphere r is

the complex ot spheres orthogonal to i\.

5. Show that the planes which belong to a quadratic complex en-

velop a quadric surface.

6. Show that anv arbitrary pencil of spheres contains two spheres
which belong to a Lfiveii quadratic complex, and that anv arbitrary point

is the center of two spheres of the complex.

7. Show that the locus of the centers of the point spheres of a

complex with nonvaiiishin^ discriminant- is a eyelide.

8. l>etine as a */////// .sy^r/W complex one for which the discriminant

a
t>

. vanishes but so that all its first minors do not vanish. Show that

such a complex contains one singular sphere which is conjugate to all

spheres in space. Show that the complex contains all spheres of the

pencil determined by the singular sphere and anv other sphere of

the complex, and that all spheres of such a pencil have the same polar

complex.

147. Higher sphere coordinates. Let
.t\

be orthogonal penta-

spherical coordinates whereby

Gj(j-)=V/j=0 and j;(,/)=V<r, (1)

be the equation u|' a sphere. To the live quantities ti , a.,,
(/

3
, a^ (/,.

\\'e will adoin a sixth one. <i , defined by the relation

and the ratios of these quantities are taken as the coordinates of the

sphere. This is jiistitied by the fact that if the sphere is given,

the coordinates are determined: and it the coordinates are given,

the sphere is determined.
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More generally, if a
(

, a t
, a.

{
, ^

4
, <r., a

fi

are six quantities such tluit

with the condition that the determinant a,,.
shall not vanish, the

ratios <i
t

:
a^. may he used as the coordinates of the sphere. Equa-

tion (4) then goes into a more general quadratic relation. We
shall, however, eontine ourselves to the simpler a

t

.

By (^-0), llM, the radius of the sphere

is

Consequently, to change the sign of
a^

is to change the sign of the

radius of the corresponding sphere. If, then, we desire to maintain

a one-to-one relation between a sphere and its coordinates, we must

adopt some convention as to the meaning of a negative radius.

This we shall do bv considering a sphere witli a positive radius as

bounding that portion of space which contains its center, and a

sphere with negative radius as bounding the exterior portion of

space. Otherwise expressed, the positive radius goes with the inner

surface of the sphere, the negative radius with the outer surface.

A sphere with its radius thus determined is an vrtfnt>'<1
.v////c/v.

If the sphere becomes a plane the positive value of </ is associ-

ated with one side of the plane, the negative value with the other.

A sphere is special when and only when a
t

.
0.

148. Angle between spheres. By ^119 the angle between two

spheres with coordinates <i
t

and
/<_

is defined by the equation

,t I, -f- ,i I, 4- ,/ /, +,,/,+ l( /,

-*cos
a ft

>j C

Ilt-nce the angle is determined without ambiguity when the

signs of the radii of the two spheres are known. If both radii are

positive, tf is the an^le interior to both spheres; if both radii an-

negative, is exterior to both spheres : and if the radii are of opposite

>i'_,
r n. 6 is interior to one sphere and exterior to the other.

For special spheres the angle defined bv (1 ) becomes indeter-

minate. More precisely, it <i is a special sphere the coordinate
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^=0 and the other live sphere coordinates are the pentaspherieal

coordinates of the center of the sphere. Then-lore the condition

that the center of the special sphere n
i

lie on another sphere /-,
is

"/'!+ "-A+ "A+ "A+ "A = -

Therefore if ii
i

is a special sphere, /<, any other sphere, and

the an^le between <r and />., cos # is infinite when the center of

</
;

does not lie on /<
(

, lint is
||

when the center of </
(

lies on //
(

.

.1
NJH'<'i'fll XJlJllTt' thf'I't'fvl'C UKl/CCH <t It I/ illl'/Ii' With it

HJiJld'C
"II tr/t<<-/t

it* r,-///,r //<*.

\Vhell # -:( 'lie +1 )^, >;(</,/-)= f/
//,-}- </A+ "./'.+ "/',+ "A = -

and eonverseh". llciice we inav sav :

When 6 = (I, |( fi, /-)= "/',-(- "./'.,+ "./';+ "/'.,+ "-/',+ ",/V < all<1

eonverselv. In this case the spheres are said to lie tangent, but it

is to he noticed that spheres are not tangent when = TT. The dif-

ference between the cast's in which = and those in which 6 = TT

lies in the relation to each other of the space which the spheres

bound. In fact, if two spheres which are tangent in the elementary

sense lie outside of each other, they are tangent in the present

sense only when one is the boundary of its interior space, and the

oilier is the boundary of its exterior space: that is, the two radii

have opposite sij^ns. If two eleinentarv spheres are tangent so that

one lies inside the other, thev are tangent when oriented only it

the radii have the same si<j'n. We say:

Two planes are tangent when they arc parallel or intersect in a

i i
*

. . .- . - i

nun nun in line ( I

1

, \. r, ^ M ).

It is ob\ ions that all the.se theorems are unaltered b\ the use

of the more genera! sphere coordinates of 1
-

J 1 .

'1 lie aii^'lc H
t
made by I he sphere <t

i

with the eoi'ird mat e sphere

.^
=-: is L;M yen by t he c(|uat ion

>*0,-. -">
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Consequently we have the theorem:

/>// tin us,' nf
ort}ii'ij"inil

i-nnfil i null's .iv iiml t//f xpln'r? I'nfinlintiti'x <t
:

,

tin 1

til',
1

<'"i'iril imil, 'x it , <?,.
n

., it , ii. nj tin if xpln't'i'
iii'f propnrtimntl f<> f/n-

i-iisi/ii'x at' tin- ittiij/i'x /r///i'/i f/nit sphere nntkt'x /<//// tin 1

I'tH'h'iUnittc

sr /,,r,s.

'

149. The linear complex of oriented spheres. Equation (1) of

vj 14s m;tv be written

a I, +(//- -f ,/ I 4- </ /* + <tj>. + (/ / cos = 0. ( 1 )11 - ;) <i 41 o u u tj v *

Ciuisitler no\v u liin'iir eijuation

(

\"i + '

V'-j + '

V';( + 'V, + 'V';, + '',;"
=

' (
L> >

where
//,

arc higher sphere eotu'dinates and r
(

ai't- constants. The

spheres \\hirh satisfy this equation form a fint'<u' rompli'j'.

This tMjiiation may in genend be identified with (1) hv deter-

mining a lixcd sphere, called the //.sr
x/>/n'/-<',

\\ith the coordinates

,/.= ,-., (i'
= l, 2, 3, 4, f>), ",= /\

7
'V +';+'-;+,;+,-;, (

:{
)

and determining an angle lv the etjiuition

a
f
cos tf

<;. (4 )

Equation ('!) is then satisfied hv all spheres which make the

angle \\ith the base sphere. This angle is equal to <> when and

only when C
H
=//

(
, : that is, wlien %(<)(). In the latter case the

complex is called
*/><</,//.

We put these results in the form of the theorem:

,1 //iii-iir I'm/I
j>lt'.r

rnitsist* in i/t'ihfii! i't'
xpht'i'ex flitting a fi.i't'il

xphi're uinltT <i ,'nfisfin/f /nnjli'. It j~ (<)=() tln j

cuniph'jc is special

<I/I<1 ('Hltxixtti nt'
Xjl}nT<'}< fillt</i'Ht fn ll fi.l'<'</ Xphl'l't'.

The \\'ords "in general" have been introduced into the theorem

because ot the exceptional cases which arise when the base sphere
is special : that is. when ii, - ". In that case the an^'le cannot be

det ermined t ]< mi ( 4 ).

If at the same time that <(
f

the complex is special, then <
.

=
(.>,

and the complex is

with "^ i-r (I. 'I hen < are the coordinates of a oint, the center of
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If when n
f
= the complex is not special, then c /-(I, and the

anj^le 61 cannot be determined. A particular rase in which this mav

happen is when < '
.,

< .--- < = f. = 0, and the complex is

",
-

This equation is satisfied bv all special spheres. Therefore nil

There remain still other cases in which <i
t

. 0, but ' = '>. The

base sphere is then special and the anisic is iniinite, but the com-

plete definition of the complex is through its equation.

EXERCISES

1. Prove that the base sphere of a complex is the locus of the

centers of the special spheres which belong to the complex.

2. Prove that if r = in the equation of a complex, the complex
consists of spheres orthogonal to a fixed .sphere, as in j 1 1<>.

3. Prove that in a special complex the coefficients in the equation
of the complex are the coordinates of the base sphere.

4. Prove that" all planes together make a special complex with the

base sphere the locus at intinitv.

5. Show that all spheres with a fixed radius form a linear complex
and del erm me the base sj there.

G. Piscuss the relation between two complexes whose equations
differ onlv in the sign of the last term.

1 . Two linear complexes > ?,//,.= and 'v'/,-" 1

'

!'. Show that the complex consisting of spheres ort hopnial to a

nonspecial luise sphere is in involution \\ith the complex of all special

spheres.

10. Show that the six complexes t/
t

- are pair bv pair in involution

and determine the relations of the base spheres.
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11. (
'n>iji/i/nfi' spheres with respect to a linear complex are such that

anv sphere tangent to both belongs to the complex, and anv sphere of

the complex tangent to out' is tangent to the other.

Show that if i\ is anv sphere, the conjugate sphere has the coordinates

"V ,.-'

''

12. If a com] ilex is composed of spheres orthogonal to a base sphere,

show that the conjugate of a sphere >' is the inverse of >' with respect

to the base sphere.

13. Find without calculation and verifv hv the formulas the con-

jugate of a sphere with reference to a complex of spheres with fixed

radius //.

14. Show that the conjugate of a sphere with respect to the complex
of special spheres is the same sphere with the sign of the radius changed.

150. Linear congruence of oriented spheres. The spheres common

to two linear complexes

form a
x}>h<>ri' >'n)i</ri/i'i/i'i'. Anv sphere of the congruence (1 )

al

belongs to anv complex ot the torm

and anv two complexes ot iorm ( -
) can be used to defin

coiio-Tnelice.

Now ( '_
}

) represents a special complex when A. satisfies the

eiinat ion
^ (

<i + \f-
)

<)
:

that is, (,i) + -2 \^(it, /-) + \'-'( /) .-n. (:')

Hence. /// i/i in 1'i'L it
.v////,'/v coinjrih )!'>' r-///x/x/.v ('

.sy//
( // x lit/n/fiif

fu firn
xjilii'l'i'X,

fill/I'll lli/'t'rf //'.!' XJi/HTCX.

The exceptional cases occur \\'lien the roots of equation (''>)

are either illusive or eipial. In the first case equation ( !
) is

identically satisfied and all complexes of ( _'
) are special. The

congruence niav then be defined in an infinite number of \\avs

as composed of spheres tangent to t \\ o dii'ectrix spheres. The

condition that ( '-\
)
be ident icallv satisfieil is f ('')". (/')-~0,
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(<>, //)=:<). The first t\vn ('((tuitions suv tliat the defining com-

plexes lire special ; the third equation says that the base sphere

of either lies on the other.

If the two roots of (''>) are equal, there is onlv one special com-

plex; in the pencil (-). Suppose we take this as N ,/ ti = 0. Then,

since the roots of (
o

) are equal, ( ". /<)
= <>. '1'his says that

the hast 1

sphere of the special complex belongs to the complex
V/,iMi= <).

151. Linear series of oriented spheres. Consider now the spheres

common to the three complexes

2'V/,.= 0, 2/M/,= 0, V,v/.= 0, (1)

which do not define the same congruence. These spheres form a

thii'iir xtT/fx.

A sphere of the series (1 ) belongs also to any complex of the

2(Xrt,+ /iAf +i"Y) Mi=0 (-)

and any three linearly independent complexes (-) may be used to

define the series. Among the complexes (-!) there are a simply

infinite set of special complexes: namely, those for which X, ft. and

v satisfy the equation <. . , .,

f (Xrt + /JL(> + vc )
= 0.

( 3 )

Tin 1

xjiht'ri'ti
<it' t/n- x/'/vVx ( 1 ) f<>rm, therefore, n nne-rfimennwHal

<\rfi')if "f xphi'n'K ii'Jiii'h <tr>' f<ni</i'>it /<> a onf-dimenxiontfl i'.rf>'tif <>f

ilirt'ftri.r spheres.

The nature of the series depends on the character of equal ion ( o ).

We shall assume that the discriminant of (o) does not vanish.

I f the quantities ( X, /LI, v) are for a moment interpreted as trilinear

point coordinates in a plane, equation (
'-\

} will represent a conic

without singular points; hence it is possible to find three sets of

values which satisfy (
: > ) and are linearlv independent. We have

corresponding to these values of (A., /u. v) t hree linearlv independent

special complexes, and mav assume without loss of generality that

they are the three complexes in equations (I ).

Then any one of the directrix spheres has the coordinates

( $ I I'.')
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Now if
ft,, /tf, and 7, are any three spheres of the series (

1 ), it is

obvious that the spheres >\ in (4) satisfy the three equations

V, ,,...,(). Vjtfr =-:(>. V^y; 0. (li)
'

' ^-r ; A1 ''

Conversely, any sphere satisfying equations (!) satisfy (4), for

three solutions ot (li) are rr, /<
(
., <,, and the most general solution

is therefore X<i
t

-(- /-<A + i"',. where (since r
r

are sphere coordinates)

equation (
o ) must be satisfied.

Hence tin' ilirt'i'tn.r xphrrfft form nnntln'r /hh'/ir .sr/vVx.

The special complexes which may dcline the series (<i) are

where %(p< 1
,
+ a

fi, + T7, )
= "

The base spheres of these arc simply the solutions of ( 1 ). Hence

tin- i liri'i't //'.>
Hjtheri'it f tin 1

xi-rit'x (li) itn- tin-
x/>/n'r>'x <>f ( 1 ).

}\'<' fi<i>'<\ t/ii'irt'oft', (fro xi'rii'x <>f xf>/it'i-i'x
xit<-fi tlnit nif/i xf>hfn' "f

nn<' xt'rifx ix tin' fioii/fnt t<> <'<t<-li
xf>1n'r>' <f tin- "tin r.

(hi flu' <>f /iff lDi<l< //" tiro
xji/it'ri'x if tin' mi/i/i' xi'n'i'x nr<' (ittii/i'uf.

To proye this note that by (
f>

)
we have

XfJLJ; ( ". I
) + fJLl'j; ( /.. f

) + 1>X ( f, ,1
)
- 0,

and no one of these coefficients can vanish under the hypothesis

that the discriminant ot (o) does not vanish. But
</,, /,-. '',

are any

three directrix spheres, and hence the theorem.

By sj 1 1 ") we are able to say immediately:

/// ///< i/i'th'/'ii/ i'iixi' fin-
xjt/tcrt'x

'if' n Inii'iir xi'n'i-x
r///v/<y>

<t

We shall not. discuss the special forms of the linear series arising

when the discriminant of equation (
'>

) vanishes.

152. Pencils and bundles of tangent spheres. It
{
and

/>,
are

any two spheres, then ,. ,

pi/ 1

= a
:

-\- \fi. ( 1
)

is a sphere when and only when N//7*
|

= 0; that is, \\heii n
:

and

A are tangent. In this case (1 ) represents ~/^ spheres, each of

which is tangent to each of the others. \Ve call this a
jn-ni-il

"t
fiiiti/i at xnlitTi'K. In the notation ot ^117 the condition for a

special sphere in the pencil is

r/
fi
+U=0, C2)
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so that there is onlv one special sphere in the pencil unless <i and

/',,
ami consequently all spin-res of the pencil, arc special.

The condition for a plane in the pencil is

^4- '",+ X('',+ #'
6

)
= (l ()

so that there is onlv one plane in the pencil unless all the spheres

of the pencil, including </. and /<
(

, arc planes.

In general the special sphere and the plane are distinct from

each other. Therefore the special sphere is a point sphere \vhose

center is in finite space. This center lies on all spheres of the

pencil l>v vj 14S. Hence the pencil is composed of spheres tangent

to each other at the same point. Such spheres have in common

t \vo minimum lines determined hv the intersection of the point

sphere and the plane of the pencil. These statements mav le veri-

iied iiniilvtieullv hv writing the equations of the spheres in theii.i*! I

form ( o ), 111.

Special forms of a tangent pencil mav arise, however. For

example, it mav consist of spheres having two parallel minimum
I fc. I ii I

lines in common. The special sphere and the plane in the pencil

then coincide with the minimum plane determined l>v these mini-

mum lines. Again, the pencil mav consist of point spheres whose

centers lie on a minimum line. The plane in the pencil is then
i i

the minimum plane through that line. ( )r the pencil mav consist ot

parallel planes ( -IS ). The special sphere in the pencil is then the

plane at infinity unless all the planes ot the pencil are minimum

planes and therefore special spheres. Fimillv, the pencil mav

consist of planes intersecting in the same minimum line ( Ts
).

The special sphere is then the minimum plane through that line.

It ", /,, and c
:

are three spheres not in the same pencil, then

px, ,+ X/-
(
-f fj.'-, ( 1 )

is a sphere when and onlv when the three split-res are tangent each

to each. In that case eijiiation ( 1 ) defines s
~

spheres, cadi o| which

is tangent to each of the others. It is a linnll, <</' /</////./// x///r>vx.

'1 here ;ire in the bun die /.
'

speeial spheres determined l>v I he ei
|

uat ton

ii | \/>
:

-f /u'^ <>, (
">

)

and ~f.

1

[daiies determined l>v the etpiation

",+ i f + \<f>, + if>. ) f M('\+ /' )- ( >- (
(;

)
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In general, equations (
">

) and (
i>

)
have only one common solution,

so that the special spheres are point spheres. Since all spheres of

the bundle are tangent, the centers of the point spheres lie on a

minimum line which lies on all the spheres of the bundle. The point

spheres and the planes form each a pencil in the sense already dis-

cussed, so that any point of the common minimum line is the center

of a point sphere of the bundle, and any plane through the minimum

line is a plane of the bundle. From that we may show that any

sphere which contains that minimum line and is properly oriented

belongs to the bundle. For let
>\
be such a sphere and <t'

; any plane

of the bundle. Since >. and n\ have one minimum line in common,

they have another minimum line in common which intersects the

first one at a point /'. Let // be the point sphere with center /'.

Then
/-,

is tangent both to a', and
1>\

at /', and therefore

if the proper sign is given to
'

r Hut </' n, -f- X'^-f- ftV, and

//= ff.-f X'^+^'V,, so that

whence r
t belongs to the bundle.

Summing up, we sav : /// </<')ii'i'n/ <i lniiUi> <>f (tinifenf spheres <*nn-

,\v,v/.s> /if iill tin' ~jz
"

xpln'WR H'hifh have <t nnnmuiin l/iif 1/1 i'n/>uni>n

<ni<l >if nn other xphrrex.

To avoid misunderstanding the student should remember that

we are dealing with oriented spheres and that, for example, three

elementary tangent spheres which lie so that two of them are tan-

gent internally to the third, but externally to each other, cannot

be so oriented as to be tangent in the sense in which we now use

the word.

Special forms of bundles deserve sonic mention. In the lirst

place, we notice that not all the spheres can be point spheres : sine* 1

,

if they were, the centers of three spheres would be finite points

not in the same line but in the same plane, so that each is con-

nected with the other by a minimum line, which is impossible.

The spheres of the bundle may. however, all be planes. Then

the special spheres must be minimum planes, which, since they are

tangent. must form a pencil of minimum planes tangent to the

circle at infinity at the same point ( vj 4* ). All planes of the bundle
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must pass through this point, and it is evident that anv two

planes throutrh this point either intersect in a minimum line or are
i n

parallel, and in each case are tangent. Hence. </., /i
.vy/-/-/<//

<</.<. <i

lillllilli' at tillH/i'llt XltJll't'l'X IIHII/ I'niisist nt X "

Jit'lHi'X f/l/'"i//l f/lf' $illH''

jaunt n/i tin' / //nii/i //it ri/ ri/'i'/f nt infinity.

153. Quadratic complex of oriented spheres. Consider the quad-
ratic complex defined by the equation

V,.
(

,r.-= 0. (1,

This is the form to which in general an equation <>f the second

degree in j\ can be reduced, and we shall consider only this case.

Since the sphere coordinates satisfy the equation

V;r=0, (-2)
-i '

the same complex (1) is represented by any equation of the form

Now let
//,

he a sphere of ( '} ), and z
t

anv sphere tangent to
//,,

and consider the pencil of tangent spheres

pn.= y i
+'te i

. (4)

This pencil has in common with ('}') the two spheres corre-

sponding to the values of X obtained bv substituting from ( 4 )
in ('>).

This gives, with reference to the fact that
//,

satisfies (
:

^),

The one common sphei'e is, then, alwavs i/ . as it should be. but

the other is in general distinct from
//

and coincides with it when

and otilv when z
t

satisfies the relation

V ' ?= ( >
:

(
,

)

Thi> complex is called a fiini/rnt ///////
.<,//////,

./.

l-'rom the derivation a t an^eiit linear complex through a spliere i/
i

is a linear complex which contains // and ha:- the property that any

jicncil ot tangent spheres Itelon^'in^ to the linear complex which
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contains //, has. in common with the quadratic
1

complex, onlv the

sphere // doubly reckoned, unless the pencil lies entirely in the

quadratic complex.

This detinition is analogous to that given in point space for a

tangent plane to a surtace by means ot coincident points of inter-

section dt a line in the tangent plane. The exceptional cases of

pencils entirely on the complex are analogous to tangent lines

which lie entirely on the surface.

It mav also he noted that if //,+ '///,
is any sphere of

(
1 ) adja-

cent to // (

. so that "N
',//'///,

= () and, from (
'2 ). "N

//,<///,
= ". 1 he sphere

lies also in (
"> ). The tangent linear complex contains all spheres

of the quadratic complex adjacent to i/^

Since
/j.

is arhitrary in (
;">

) the quadratic complex (
1

)
has a pencil

of tangent linear complexes through any sphere //_. Among these

there is in general one and only one which is a special complex,
for the condition that (

;>
) he special is

](,;+ /i )-//;-
^ 0,

which, if we replace \JL by
' and use (

1 ) and (2), becomes

The special linear tangent complex is then in general (^=0)
V

>//(
,,

(

= o.

In an exceptional manner, however, all tangent linear complexes
are special when

^L''' <i:
-~- ()

-

(

'

)

When this condition is satisfied the sphere i/
t

is called a nhn/>i/nr

*r l.:r,.

'I lie conditions to he satisfied by the coordinates of a singular

sphere are. accordingly,

V,/- M, V/-,. //;=<), ^"'V//' <i, (7)

whieh expi'ess respcctivelv that
//,

satislics the fundamental e<pia-

t ion for sphere coordinates, that tin- sphere //
is in the complex ( I ),

and that it i- a >iir_;-iilar sphere.

The !aM eipiation also expi'oses the tact that <,// are the coor-

dinates ( ,f some sphei-e. and the second eijnation tells us that the

sphere /
// is taiiLTfiit to the

sj
there

//,.
The two spheres therefore
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define a pencil. On tin; sjihriv // there is, therefore, a definite

point /', tin- center <>t the point sphere of the pencil. The loni> of

/' is tin x" extent ot points forming the .v///-/</<v /' .s-///</?/A?/vV/Yx.

In order to (letennine the decree of the surface of singularities

we shall take z
t

, any sphere of the pencil of tangent spheres delined

by ii- and <
>/ , so that

p.?,
=

(.<, 4- M.'/,. (*)

Substitution in (7) e/ives the equations

V =0, V '''''
:ii, V '''''' =

f),

~~<", 4- XT *-
M'-.+ X)- *"*

(.''<+*>*

but simple linear combinal ions ot these show that they arc eqiiiv-

lllellt to the three equations

V : _- ii V - o V --(I. ( ;i
j

**'-i+\ ^('-
t +xr

y

Cunverselv, if 2. is unv solution of ('.') and \\'e place u,= >

f
t
+\

it is clear that ?/
(

. is a singular sphere ot the ijiiadratie complex ( 1 ).

Therefore equations (It) are satisfied hv all spheres belon^in^ to

anv pencil of tangent spheres detined by a singular sphere // and

the sphere <',//,, and, conversely, anv sphere \vliicli satisfies ( 1'
)

belongs to such a pencil.

Let us no\v adjoin the condition that 2,
should be a point sphere :

nawel
"
v ' .,= (>. (10)

Lip i at ions (

(

.<
) and

(
I 0), then, deli ne the points /'.

Consider now anv straight line / delined as the intersections of

two planes .17 and .V. Take

2/"'-'
= (HI

as the equation of anv linear complex which has M as a ba>e

sphere, and

N^ //r,
-0 (!'_)

as t he equal ion ol an v linear complex which has A" as a liase sphere.

I he point spheres ot the complex (11) have centers on .'/. and

the point spheres of the complex (111) have centers on .V. so that

the point spheres helone/inn- to .17 and A' have centers on the line /.

I 1 ei ice t he simultaneous soli it ions of equal ions ( !' ). ( 1
( '

). ( 11 i.

aild (\'l) M'ive the point Spheres \\-hose center- lie both oil the

surtaee of siii<>-ii larii ies and on ilie line /. 'I'hc inimbei- of these
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solutions is the number of points in which / meets the surface of

singularities; that i>, the decree of the surface.

To solve these equations we mav begin by eliminating X from

the last two of equations (I'). Since the third equation of (\\ )
is

the derivative of the second with respect to X, the elimination of

X skives the condition that the second equation should have equal

roots in X. Since the second equation in ( '.' ) is of the fourth order

in X, liv virtue of the first equation in (
U ). tin- result of the elim-

ination of X is an equation of the sixth decree in
.:'f

or the twelfth

decree in z
t

. This equation, combined with the first of equa-

tions (
1' ) and the linear equations (1"), (11), (1:1), gives twenty-

tour solutions. Therefore th>' I'^mit'uni <>f ximjuhiritu's tn <>t t/n
j

tit'i'nti/-f"urtJi "/<//.

Equations (

(

.))~(1-) niay be otherwise interprete<l by consider-

ing (11) ami (
1 -! ) as the equations of two complexes with base

spheres which are not planar and therefore intersect in a circle.

which may be any circle. The special spheres of the complexes

have their centers on this circle, and the special spheres which also

satisfy (7 )-('.*) are point spheres, since the condition that they be

planar adds a new equation which in general cannot be satisfied.

Hence, by the argument above, any circle, as well as any straight

line, meets the surface of singularities in twenty-four finite points.

If the equations arc expressed in ('artesian coordinates, the

circle will meet a surface of the twenty-fourth order in forty-eight

points. We have accounted for twenty-four finite points : the other

twenty-four must lie on the imaginary circle at infinity. Since the

plane of the finite circle meets the circle at infinity in two points.

We have the theorem: Tin- *///_-/i/rv
,if' x/tn/K/itntirx i-^/tfilt/t* //!>'

i HKi'jinitrif '//'/' lit iittinttij <(a i( lu'i-li'i'fnlil /nn'.

Return, now. to the pencil (
>>

). There is one plane /<
in the

pencil which is tangent to // at /'and is uniquely determined l>v

//
. Such planes form an s,~ extent which envelop a surface. To

rface is the surface of singularities let //,+ <///,
be

neighboring to
// . so that

V/^/v^u, V
-,/,<///,

-

o. ^
;//.'///,

-
". (1 ;>>)

'I'he pencil of tangent spheres defined by
// -f- /// and <\( i^

4- *1 /i ) \<

i'
( < * n ) ( //

^
'/// ), (It)
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and (In- condition that i\ should he tangent to
.:,

is satisticd 1>\

virtue of
( 7 )

and (
1 > ). Hence, in piirticular, the point /', the center

of the point sphere of (
S

), lies in the plant- /<'
of the pencil (14);

that is, /' is the limit point of intersection of t\vo neighboring

planes j>
and is thereloiv a point of the surface enveloped bv

j>.

This establishes the identity of the surface which is the locus of

/' and that enveloped by
/>.

The class of the surface ot singularities is the number of the

planes ]>
which pass through an arbitrary line. To determine this

number we may again set up equations (

(

.i ), (11), and (1-), but

replace (10) by
Ml +/w6 =0, (lo)

which is the condition that n
t

should be a plane.

Anv plane of cither of the complexes (11 ) or ( 1 - ) intersects

the base plane M or A' respectively in a straight line, and therefore

the planes common to .)/ and A" pass through the line /. The solu-

tions of equations (I 1
). ( 1 1 ), ( 1 - ) and ( 1 ~>

) give, therefore, the

planes tangent to the surface of singularities which pass through /.

Hence tin' mtrfiti'?- nf Kinijuhiritu'n i* of the tirentij-fuurth i-l'ixx.

154. Duality of line and sphere geometry. Since line coordinates

and higher sphere coordinates each consist of the ratios of six quan-

tities connected bv a quadratic relation, there is duality between

them. To bring out the dnalistic properties we shall interpret the

ratios of six quantities ,/v connected bv the relation

->V + ./; + .': + .' +- .'^ + .r,:
= .).

on the one hand, as the sphere coordinates <i
t

of
jj
147 and, on the

other hand, as the Klein line coordinates of >j loH.

It is to be noticed that for a real line, as shown in vj l^O. \\'e

have j-. .i'
:

. jr real and ./ ., ./. . .r
f pure imaginary. ( )n the other

hand it follows from vj Jj 1 4t>, 147 that for a real sphere \\ e have

./,. ./.,, ./ . ./ real and ./'., ./
, pure imaginary. Hence configurations

which are real in either the line or the sphere space \\ill lie

imaginary in the ollr.-r.

It is also to be noticed that a sphere for which ./\=0 is peculiar,

being a special sphere, but the line tor which j'
f

() has no special

geometric jii'opcrt ics. The complex ot lines r (i has. however,

a peculiar ride m the duah>tic relations. \\ c shall call this com-

plex ( '. Its equation m IMiicker cnordinates i< i> />
= ".
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Two spheres whose coordinates ditler only in the sign of ./ are

the same in the elementary sense, hut two lines whose coordinates

differ in the same way are distinct and conjugate with respect to

the complex ('. The relation between sphere and line is therefore

in one sense one-to-two, but becomes one-to-one by the convention

of distinguishing between two spheres which differ in the sign of

the radius.

Any sphere for which
./^
+ /./', is a plane, but the correspond-

ing line has no special geometric property. The complex of lines

./ + i.r. il, however, will ha\e a peculiar role in the duality. We
shall call this complex .V. It is special and consists of lines inter-

secting the line with coordinates 1:0:0:0: /. Its equation in

IMiicker coordinates is
//.,

(

o.

We have now as immediate consequences of our previous results

the following dualistic relations:

/*'/' ^' /

A st raight line. A sphere.

A line of the complex ('. A special sphere.

A line of t he complex X. A plane.

A line of (' but not of X. A point sphere.

A line of s hut not of ('. An ordinary plane.

A line of (' and of X. A minimum plane.

Two lilies conjugate with respect Two spheres (littering only in

to''. the sign of t he radius.

Two intersecting lines. Two tangent spheres.

A noiispecial complex. A nonspecial complex.

A ^pecial complex consisting of A special complex consisting of

lilies intersect ing a fixed line. spheres tangent to a tixed sphere.

A linear congruence consisting A linear congruence consisting

of lines intersecting two lines. of spheres tangent to two spheres.

A linear series lorining one set A linear series forming one of

ni generators of a qiiadrie surface. the families of spheres which eii-

\ eh
1)1

a 1 hipin's c\ elide.

A quadratic line complex with A quadrat ic sphereeoniplex with

it> Mir_;ular surface. its singular .surface.

A pencil ot lines corresponds to a pencil ot tangent spheres,

and ,i bundle of lines to a bundle of tangent spheres, ('onsider a

point /' and the /_~ lines through it. 'I hev correspond in general
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to a bundle of tangent spheres which have in common a

line
i> Ck. !-~>L!). It is therefore possible in this way to set up a

correspondence of the line space and the sphere space by which

anv point of the line space corresponds to a minimum line of the

sphere space.

An exception occurs when the point /' of the line space lies on

the axis of the complex \. Then all lines through /' belong to \,

and the corresponding bundle of spheres consists of planes which

have in common only a point on the imaginary circle at infinity.

('oiisider two points /' and (
t

> connected by a line / correspond-

ing to a sphere x. /'corresponds in the first place to a bundle of

spheres containing * and therefore, in the second place, to a mini-

mum line
j>

on x. Similarly, <
t

> corresponds to a minimum line
</

also on >. If
ji
and

/
intersect in a finite point .)/. the point sphere

with center .17 belongs to both the bundle of spheres containing/'

and that containing >/.
Therefore the line corresponding to this

point sphere must pass through /' and (J. Hence /, since it corre-

sponds to a point sphere, is in this case a line of the complex <
'.

('onversclv. it' / is any line of the complex (' the minimum lines

corresponding to /' and (> lie on a special sphere and intersect.

< hherwise, if / is not a line of the complex (' the minimum lines

do not intersect in a finite point and hence are two generators of

the same family on x.

('oiisider now the line /' conjugate to / with respect to the com-

plex ('. '1 he points of this line correspond to generators of the

same sphere x. Hut points of / and /' arc connected by a line of <\

and therefore the '4'eiicrat ors ^iveii by /' intersect those C.-IYCH by /.

Therefore the generators '_;-iven by points of / and /' belong to

different families.

('oiisider now the lines of a plane. They form a bundle which

corresponds to a bundle of tangent sphere--. It is therefore possible

to set up a correspondence of line space and sphere space hv

which a plane corresponds to a minimum line. \\ e have nothing

new, however, since the lines which lie in a plane are conjugate

with respect to (' of the lines which pass through a point. In fact,

it we keep tii the correspondence (if point and minimum line it is

not difficult to show that the f points of a plane correspond to

/.
" m mini u in lines, \\ hie h can be arranged in /_' spheres which base
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a niiiiiiuuin line in common, so that in this way a plane corre-

sponds to a minimum line.

\Ve may exhibit these results in the following table:

A point. A minimum line.

The points of a general line /. One set of generators of a

sphere N.

The points of /' conjugate to / The other set of generators of ,s.

with respect to <

The points on a line of f but The minimum lines on a point

not of X. sphere (the lines of a minimum

cone).

The points of a line of X but The two families of minimum

not of (' and the points of the lines of a plane.

conjugate line with respect to ('.

The points of a line common to The single family of minimum
(' and X. lilies on a minimum plane.

Consider now any surface /*' in the line space. We may find a

corresponding surface in the sphere space as follows. Let /' be

any point on /-'and consider the pencil of tangent lines to /-'at /'.

These lines if infinitesimal in length determine a surface element.

Corresponding to the pencil of tangent lines there is in the

sphere spare a pencil of tangent spheres which determine a point

/'' and a tangent plane: that is, another surface element. It may

be noticed that the point /'' is the center of the point sphere which

corresponds to the line of the complex (' in the pencil of lines

which lie in the surface element of /'.

We haye in this way associated to a surface element in the line

space a surface element of the sphere space. When the surface

elements in the line space are associated into a surface /'. the sur-

face elements in the sphere space form another surface, /'', which

corresponds to /'.

To any tangent line of /-' at /'corresponds a tangent sphere of

/'' at /''. It is known from surface theory that coiiseciitiye to /'

tin-re are two points
<
t
) and // mi /' such that a tangent line at

either coincides with a tangent line at /'. The tangents J't
t

> and

/'// are the principal tangents at /'. It the directions ot one of
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these tangents is followed on tin- surface, we have a principal

tangent line (or an asymptotic line) on /'.

Corresponding to this, there are in the sphere space two con-

secutive points (/ and /.'' on /'' such that a tangent sphere at

either coincides with a tangent sphere at /''. If one of the direc-

tions /''(/ or /''//' is followed on /'', we have a line of curvature

of /".

'1 hcretore, in ttte
<'i>rr<'xj>'>/t<t<'n<'t' bt'for? itx principal tii/ti/eitt lutes

"/i it xurt'ii'-f in tin' lint'
xjxti'e 1'vrrt'sj.xttnl

t lim-x <//' curcature uii the

cui'i't'spuiidinij
xtt/'tcice in the xp/it

j
f't

j

xfnti't'.

EXERCISES

1. Show that the relation between line space and sphere space mav
be expressed bv the equations

- /.:: = '/'.,
- (X -

il')t,

(X + !));: = V//
- Z/,

where .r ://:-;: t are ('artesian point coordinates in the line space and

A : }' : '/. : 7' arc similar coordinates in the sphere space. Verity all the

results of the text.

2. Trace the analogies between the four-dimensional sphere geoiu-

etrv and the three-dimensional point geometry with peiitaspherical

coordinates.
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FOUR-DIMENSIONAL POINT COORDINATES

155. Definitions. We sluill now develop the elements of a fonr-

dimeiisional geometry in which tin 1 ideas and iiH'thods of the ele-

nu'iitarv three-dimensional point geometry are nst-d and which

stands in essentially the same relation to that geometry as that

docs to tin- <4vometrv of the plane.

We shall define as a [mint in a four-dimensional space any set

of values of the four ratios
.1^: .r, :./',: ./

4
: ./-. of five variables. In a

nonliomogeneous form the point is a set of values of the four

variables ( ./, //. z, ic ).

A straight linr is defined as a one-dimensional extent determined

hv the equations

pjv=//.+ X,r
1
, (/ = !, -2, :',, 4. f>) (1 )

where
//

and z
:

are two fixed points and X is an independent variable.

A [dan*' is defined as a two-dimensional extent determined l>v the

equations 1 .> . <
-

, , .> ,

p.i\ //, -f X^, -f nti\, (<
= 1, -, 3, 4, ;>

) (
'1 )

where j\, // (

,
.?,

are three fixed points not on the same straight line

and \. ft are independent variables.

A
liiffH-i'^litHf'

is defined as a three-dimensional extent determined

by the equations

p.i-
-=

// f

-f X^-, + n.n\ -f I'HS (
i 1, -, :>>. 4, ")

) (
:> )

where //,, ^
(

, n\, a, ai'e four fixed points not in the same plane and

X. /z. r are independent variables.

From these definitions follows at mice the theorem:

/. .1 xtt'iti'i/Jtt
II in' ix rntnph'trlif <tn<l

Uni<jUi'lif
/ (<rnn n<<l

//_// <i/it/

fir,, i,f' //.-
jK-i/ttx,

<i
fililin lul itmj tli/'tf "f it*

fmiiittt ll'hit'li <!/'<' //"/

i-nllnn it r. iiml ii //
i/jn rjilnin' In/ inn/ J"iir j' it*

jio/iit* trhti'h ii/'f nf

t-n^liinnr.

The forms of e<
i
nations ( 1 ), ( l' ), (

:i
) show t hat if the fixed points

are Li'iven, the eorresjidiiding loetis is completely determined. The
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theorem asserts that any points mi the Incus which arc the >ame

in number and satisfy the same condition as the ^ivcii points mav

be used to detine the locus. \Ve shall show this for the plane (-).

Let K be a point deiined by e<{iuitions ( '2 ) when \ \^ fi fj.
;

that is. let

},= //,+ \z,+ /*,',. ( 1 )

K<[iuttions (-2) may then be written

which are of the type p->\
)

', + ^-X + P "\- ( ">
)

Then anv point wliich can be obtained from (

m

l ) can also be

obtained from (">), and converselv.

The discussion, however, assumes that T is not on the same

straight line through z
t

and n\; for if it were, the coordinates of )"

would not be of the form (4). In fact, to obtain from ('2) points

on the line
//,:,

in the plane ( '_' ) it is necessary to replace X and /z

bv the fractional forms -, . write the equation of the plane as
v v

and then place v = 0.

\\'e liave shown that in equations ( '2 ) the jtoint //, may be

replaced hv an\- point not nn the same straight line \\'ith z
t

and >r .

In the same manner each of the other points mav be replaced, and

the theorem is proved for the plane.

The student will have no dit'liciiltv in proving the theorem for

straight line and hyperplane.

Another immediate consequence of the definitions is the theorem :

II. If f ii'n
jiniiilK

In' in it
ji]<ni>\

tin' /fni' <l> t'nniii' <l f'i/ tli. in //. .v

/// ///
jiliim ; If fht't'i' /n'iiifx

In' in it fi
i/jufjil'i i>', tin

ji/<//n'
if, f, //////"'/

I'll tin nl III-K III thi' liinufnlilili.
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1 lence :

///. A ni/ hi/peri>1ane mai/ he represented hi/ a linear equation in

the coordinates j\.

( 'onyersely :

IV. An >/ linear equation in
.r, represent* a hi/perplane.

Let 2'V,= n (7)

be such an equation, and let
//,,

z
t

, ir., n
t

be four points satisfying

the equation but not on the same straight line. Then we have

2 llt , y,, ? = o Y,rN' = o V,M/ = o
i,/.- ^ r.

/
'" < Zj * '

and by eliminating >r from these (Mjuations and (7) we have an

equation of the form (fi) and thence equations of form (>).

If we eliminate p, \, ft from equations ('!) we have the two

equations

'-, //, *, "V

I -'4 4 4 :. ':, 5

That is:

V. An >/ plane ntai/ he represented hi/ tim //near equations in the

coordinates ,'\.

( 'onverselv :

VI. An// tii'n indepemlent linear fquaffnun represent a plane.

be such equations. Since they are independent, at least one of the

determinants ' '

is not /ero. Let us assume that * : '

0.

1 '" 4

The two eijiiations can then be solved lor ./' and ./., and thus

reduced to two of the type ( ', ) with tf. and / = 0. I f //,..:,,//',

are three points satisfying the equations but not on the same

straight line, we mav then eliminate <<
t

and <\ and obtain e<jiiations

of the form (S) and linallv of the form ('_')

In the same manner wt- may easilv jn'o\e:

VII. A ni/ xtraia/tt ///<< mai/ /-<

re/irem'nted /-//
three linear equating,

and an// tJiree independent linear
i'qii<

items
ri'/i/'i'senf

<i xtraiaht hue.
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As a special case of theorem IV, any one ol the live equations

.r = represents a hyperplane. ('(insider in particular r= 0. The

points in this livperplane have the coordinates ./:./,:./;./, as in

project ive t liree-diniciisii mal space, and the definitions of straight

line and plane are the usual definitions. The two equations which

represent a plane consist ot the equation ./. = " and anv other linear

equation. If, then, the equation j~. = is assumed mice for all, a

plane is represented by a single equation. Similarly, a straight line

in ./. = ( i is re
]i
resell ted by t wo equat ions besides the CM

]
nation x, = <>.

Obviously the difference between the representations of a plane in

three-dimensional and four-dimensional geometrv is similar to that

between the representations of a straight line in two-dimensional

and three-dimensional geometry.

.lust as plane geometry is a section ol space geometrv, so space

^eoniet rv is a section of four-dimensional geometry, the three-

dimensional space being a hvperplane of the four-dimensional space.

156. Intersections. \\ e shall proceed to give theorems concerning

the intersections of lines, planes, and hvperplanes. In reading these

it mav be helpful for the student to bear in mind that within the

same livperplane these theorems are the same as those of the ordi-

nary three-dimensional geometry. but differences emerge as we

consider figures in different hvperplanes.

/. Tn'n // v/" //'/''//<* inti'W'f in ii
/'/<i/i<'.

All
liypi't'pJinii'n tJiroui/h

f/n- mini!'
j'liini

1

f'li-in n
fn'/ii'if,

iiit'1 <ni if
?"'" i

if tlu'Sf //
///', r/1/iint's ////>/

/> IIS.'J tn
,1,'fuU'

t)l>'
}l!<ttl<>.

The first part of this theorem follows immediately from

theorem VI, 1 .V>. For the latter part we notice that anv hvper-

planes of the pencil V\/ ./ 4- \"V // .>---(} intersect in the plane^^* '

J^W

determined bv V'/,r-= and V/,
i

./-i= 0.

II. Thr'i
/ii/iifffitiini'K

tint in tin- mi ii>i'
jH-Hi'tl uiffWi't in <i xfriiii/hf

////>'. A//
/ii/jti'i'ft/tnn'N flir<i<//t f/i>' mt mi' I/DI' fun/I n 1nniiJlt\ ii/nl <DH/

tlir'i "t tl/i'i/i nut in f/n' xii/t>i'
i>i'iii'il

il >t i run HI' tin 1

I/HI',

This follo\\-s at once from theorem VII, ^ 1 ">">. The bundle of

hverlanes is i\cn bv the euation ^<ij-\- X^^.r -f- ^"^ ./ ".

///. /'-/// fn/i>t')'nl<i>n'x not in tin 1 xitnit' linii'lli i /it * i'.*' i-t /i/ ii
/'"/lit.

. 1 1! !i i/
/'< rjiJ'i

ni N t/i/'nin/fi t In' fit an'
i
mi nt > at- Hi 1 1 t Ii TI i'-il i a" a *i "ii <il * .rti' nt,

/lll'l illll/ /"///' nt' tlll'lll lint III till Silllli' /ill/I'//'
1

llt'tl'/'l/llltt' tin '"'/!/.
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This follows from tin- tact that the tour equations

ViV,= 0, V/,
,/
= <>, \V./- .11. V,/.;. = <>

determine in general a single point. The exceptions are when the

four equations represent hvperplanes ot the same bundle.

IV. A
j'l'i

ni' <in</ it
hi/jit'i-jilii

in' iiltf'l'st'i't i it <( xtt'(ri<//tt liin ii nil xx tin'

plitii'
lit .s

1

i'/itiri'/i/ in (In' hi/^t'r/tlum:

For the equations which determine the points common to a plane

and a hvperplane are three linear equations which in general deter-

mine a line. If, however, the plane lies in the hvperplane, the lat-

ter niav lie taken as one of the equations of the plane (theorem I ),

and we have only two equations. Furthermore, if the plane inter-

sect the hvperplane in three points not in the same straight line,

it lies entirely in the hyperplane l>v theorem II. v< I-).).

V. T'/'"
j'liiiii'x

intt'rxi'ft in '/ xiiii/lt' fi'iinf mtfi'xx ///-// // in tin- minif

h '/)" rjil'tni'.
In t/i<if i-iixf tin // //it* rxiff /// ,/ //'//,-, <,, ,.//'/,,/<//.

For the points common to two planes muM in general satisfy

four linear equations and hence reduce to a single point. It. how-

ever, the planes are in the same hyperplane. the equation of that

hyperplane may be taken as one ot the equations of each of the

planes, and the points common to them have only to satisfy three

equations. Furthermore, if the two planes intersect in a line, the

hvperplane determined by four points, two on the line of inter-

section and one on each ot the planes, will contain both planes

( theorem 1 1, ^ 1-V> ).

VI. Tl/'i >

filinii-x
H"t in f/h' xiiti'

]iii)>iT]iliijit'
if" n"f in

//
a- /''i/ i/iti /-

,v. ft, fiiif in<ii/ i i/tiTxi'ft in ii
xni;il>' ji'ii/it

"/ in n
xtriiiijlit fi/if. Tln't'i'

jilitihx
in tin- xi in) i'

/it//>i'/'/i/<i)it'
//ifiTxi !'( in ii j>int r <>

xtf<i!;/iit liih'.

The points of intersection of three planes must satisfy six equa-

tions, which is in general impossible. If the planes are in the >ann'

hvperplane, however, the number of equations is reduced to \\\ least

four by taking the equation of that hyperplane as one ot the

equations of each of the three [danes.

lint consider four hvperplanes intersecting in a point. It is

possible in a number of wavs to pair these hvperplanes so as to

determine three planes which have the point in common but are

imt in the >amf hvi>en>lane.
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Or. apiin, consider anv two jilaiics intersect inij in a point A.

It is easily possible to select t\vo points /.'and (' which shall not

lie in the same hvperplane with either of the LMVCII planes. 'I'he

plane A l'>i' has the point .1 in common with the first two planes,

lnt they do not lie in the same hyperplanc.

Similarly, let two planes intersect in a line A ft. A plane may In-

passed through .///and a point (' not in the same hyperplane with

the first two planes. ()!' course any two of these planes lie in the

same hypcrplane (theorem V ).

VII. .1 xtrii'ujlit 1 1'in
1 inn/ ii

lii/i'i'i-jil'iin'
inti'i-xi't't in <> xin</ff jmiitt

ini/i'xx tin' lini
1

l/'i'x t'litit'ffi/ iii tin 1

/ii/HTifunc.

e reason s oyoiis.

VIII. . I atriiiijht //in' ii>i</ <i
i>l<nn'

ilu ii"f iiiti'rxt'i-t ini/i'xx tin-it //

/// (In' xiinii'
hi/fii'i'nftini'.

In tin' /ii//i'/- i-iixf thiii I'iftn'r fnft'rxi-i-f in it

>u//tf in' (hi
1

//iii' //i'x i ntii'i'li/ in tin' il'i/ii
1

.

The points common to a straight line and a plane must satisfy

fiye equations, which is in evneral impossible. If. howeyer. the line

and plane are in the same hyperplane, the number of equations

may be reduced to tour.

Attain, let the line and plane intersect in the point .1. Three

other points may be taken : /' on the line, and <
'. /> on the plane.

The h\ perplane determined by .1, />'. <\ l> then contains both the

line and the plane.

IX. Tiro *t /</!> / /it lilli'X tin lint nttl'l'Xi'i-t Htlfi XX till I/ I'll' ill till' Xil I 111'
f
'III i '.

In tin' liitti-r i-ftxi' f/n'if inti 'fx,'i-f in <i
/"/////

/ rlin'nli / />ri/i//tnnt.

I he points common to two hues must satisfy six equations,

which is in general impossihle. If. howeyer, they lie in the same

plane, the number of equations may be reduced to four.

A'_;'aiii, let the two lines intersect in a point .1. The plane deter-

mined by .1 and two other points, one on each hue. contains both

lines.

\\ e close tins section with two theorems on the determination

ot planes and hypcrphuies which ha\c already been foreshadowed.

X. A
/i/'t/ii

ntti it / ili'ti'firt'nii'tl l^i ( 1 ) t/i/'i'i
1 ii"t/itx not ni tin 1 xit//ii

Iliii' ; ( - )
'I 1 1 in- illhl il [mint il"t nil it ,' (

') )
/"'" ////< /'Xi i'tlll'1 lllli'X.
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XI. A In/I" i'i>l<nif
niit/i I"' ili-tcrinini'il f>// ( 1 )_//// points <>f in tin*

tut/Hi
I:/<IH.

: (
- }

'i
i'/'ii/>

'//i'/ it i>int imt nil It : (
'.\ > ,1

/>l<ni<'
nn<l

//'/it- i//fi /*> <?/'//</ i< : ( 1) t/i'n
II/,I//IK hiffWrfiHi/ in ii ///if; (

.">
) tJifft'

llllix ll"t in tin
1

inliiif
jililllf intl'THt'cttHt/ I/I <l

fi'iint.

157. Euclidean space of four dimensions. We shall consider now

a t'onr-diniriisional space in \\liich metrical propcriifs analogous to

those of tliivr-dinifiisioiial Kiiclidcan space are assumed. For that

purpose let us replace the ratios .r : .ra : j- : .r ; j\ bv ./'://: z : /r : f.

Then if f
-'- 'I the coordinates ,V. )'. /, If are finite, and the values

( .V. )". /. //' ) are said to represent a point in tinite space. If / =
one or more of the coordinates A'. )". /.. II" is infinite, and the ratios

.r://:^:/r:0 are said to represent a point at intinitv.lit
Tin- 1'iiinitt'tin f -' r>

jit''
xfiit*, tlnii, ///-'

liifjH'i'jtliitn'
'it /'nti/i/t //.

'I'hc i//'tiftttiff lietu'eeii t \\ o points is detincd 1\' the ('((nation in

the nonhttnio^eiieous coi'irdmates

from which it appears that the distance between two tinite points

i-- tinite and that the distance between a finite point and an infinite

point is in general infinite.

The equations ot a straight line are in noiihomoj^eiieous coor-

dinates

1 \ 1 + X 1 f X

,.,
.V, A', }'.. >',

/... /, II '. I/,

hieh ma v 1 ic wrii len

\ \. } r, /. /., ii' n,

// f />
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line. It is mulilv seen that a line inav be drawn through the

point (A", }' , Z, IT ) with any given direction and that two lines

through that point with the same direction coincide throughout.

There is, therefore, a one-to-one relation hetween the lines drawn

through a iixed point and the ratios we have used to define direction.

This justifies the use of the word.

Two lines with the directions .1 :/':'":/> and . / o
: //,: f\ t

: />,

respectively are said to make with each other the angle #, defined

by the equation

A, ,/.,+ /;,/,.,+ (\('.,+ />,/>.,cos V = (h )

VA?+ ii'- + r,
j

-f />,-
v A: + /;.; + r; + />;

Consider the hvperplane, H'=o. Anv point in that hvperplane
is tixed hv the coordinates (A". )', 7, ). and the distance between

two points reduces to the Euclidean distance. The equation of

any straight line in that hvperplane is

so that /> (}. Hence the definitions of distance and angle become

those of Euclidean distance and angle. Therefore the geometry in

the hvperplane //'=<> is Euclidean.

Similarly, the geometry in each of the hvperplanes A"= 0, }'=<),

Z (I is Euclidean. The same will be shown later to be true for any

hvperplane except the hyperplaiie at infinity and certain exceptional

imaginary hyperplanes. We accordingly call this four-dimensional

geometry Euclidean.

In the hvperplane at infinity, t 0. a point is fixed by the

homogeneous coi'irdinates ./://: 2 ://', and we may apph" to this

plane the methods and formulas of three-dimensional geometry
with quadriplanar coi'irdinates.

It is important to notice the connection between figures in the

four-dimensional space and their intercepts with the hvperplane at

infinity. These intercepts we shall sometimes call fi'tii'i-n.

The e< piat ion ( "> ) of a st rai^ht line with direct ion . I :/!:<': /Mnay

be wi'itten in homogeneous eoiirdinates as
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\\ hence it appears at once that its intercept with f = <> is the

point .1 :/::<':/>.

The eijiiatitui of a hvperplane is

.i.r + /// + <'z + />"' + i-:t o,

ami its trace on the hyperplane at infinity is the plane

A.r + /.'// -f- ('2 + // = 0.

Similarly, the equations of a plane are

J
1
.r + />

t

1
.// + r

i
* + 7J

l

w + 7::
i

/ ,-:0,

I.,-'' + /'...'/ + <
'.,z + />.," + /-',/

= <>,

and its trace on the hyperplane at infinity is the straight line

.1
,./
+

/',//
+ r

r
? + /V /1 = 0,

.I.r 4- /'.,// 4- <'., + />.,"' ^.

A
Jiifj'H'rxplit'ri'

is defined as the locus of points \\hosc distances

from a fixed point are equal. It is easv to show from ( '_' ) that

the equation of a hvpersphere is

"( ''~+<r+^+ "'' )+ -
",.'' 4-

- ".'/'+ - '<Jt+ - fi
4
irt-\-,tf

2= 0, (
s

>

and that its intercept with the hypcrplane at infinity is the qiiailrie

surfiu '

.r+,r+r +fr^=n. ( 0)

This surface, ^'hich we call the ttf>x"}uti'. plays a role in four-

diniensional sjfeonietry analogous to that played l>y the inia^iiiary

circle at infinity in three-dimensional ^eoinetr\'. All hyperspheres

contain the absolute. The hyperplane //'= <> intersects the absolute

in the imaginary circle at infinity in the space of the coordinates

./. //. ,:. The same tiling is true of all hyperplanes, \\ith the

exception of the minimum hyperplanes, to he considered later.

158. Parallelism. Any two of the configurations, strai^lu line,

plane, or hyperplane, are said to lie parallel if their complete
intersect i< in is at inlinit y.

This definition ^'i\'es us nothing new concerning parallel lines.

Fi>r example', we have, at mice, the following theorem:

7. 77' /'" " '

//' <'/<>/
1
1" I lit i n x

i
n 1 1 -i i

/<
a a 1 1 ft i n i /It' 1 1 Hi'

I
>' I t'lllli / In 1 1 tl.i'i'if 1 1 in-.

.\l'l/ t It'll III! fill 1 1 I 1 1 III X //. /// ///. HI I Illl' Ill ll III 1 1 II' I ill fl r III I III I 111' I >ll I IIS.
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Neither do we find anything new concerning ;i line parallel to a

plane. We luive already seen that a line will Mot meet a plane

unless it lies in the same hyperplane. In (In- latter case the line

mav interseet the plane in a finite point or he parallel to it. \Ve

have the following theorem:

II. If <t //'HI' /x
jitini//''/

t'i it
I'litni'

tJn 1 tirn //, in (In' <tini'
liijjn

r-

iihim- it nil i/ifi/'/iinii' f/i'if h
i/jn i'jil'1

in'. Tlu'iiiii/li iin// [mi nt tn xixt/'t'

//</,* it jn nril "/' liiti-K
i>iiril//i'/

I" it tin il
jilitiif.

\Vlien we consider parallel planes we have to distinguish two

cast's. Two planes are said to he
rtmijilt'ti'lt/ /><ir//i-/ it they in-

tersect in a line at intinity. and are said to he
x///////y i><irnllfl

if they intersect in a single point at intinitv and in no other

point.

From theorem XI, (4). ^ l.Vi, we have, at once, the theorem:

///. //' tn'n i/d

In fact, completely parallel planes are the parallel planes of the

ordinary three-dimensional geometry. On the other hand, two

simply parallel planes do not lie in the same hvperplane and con-

seijueiitK cannot appear in three-dimensional geometry. A dis-

tinction hetween completely and simply parallel planes is brought

out in the following theorem :

IV. If t il'n
filitni'K

lire i-nin
i>li'ti'l I/ jut

I'ltl li'l . Hit I/ lilli' if ii, 1C /X IHiralli'l

In xmitt' Inn if tin- nt/nr itml, in
j'lli'f,

tn it
////<// nf Ian a. If tirn

l>/in/i
x <//v xi

in/ill/ jut /'iillil , tlni'i IK n
UHtifUf i//r< '//// in iiii'//

ji!<titi'

Kiii-h tlnit liin'K with tlnit il i I'l'i-t'mn in litlnr i>htn<' <//v
fnti'nlh'1

tn /I/UK

it'tth tin 1 Kii/in tlii'i 'i-f/ii/i in lli,' nf//i/\ I'l't htiiK ii'itli ii/ii/ "tin/' i/n'ii't/'in

III "IK'
fililm' Hl'l'

/Hl/-'llli
I tn ,/,, Hill 'X I

if till "till l\

To understand thi> theoi-em note that if t \\ o eompletely jtaiallel

planes intersect in the line / at infinity, any line in one plane \\ill

meet / in .some point /'. and any line through /' in the >econd

plane will he parallel to the first plane. If, however, t\\o simph

parallel planes intersect in a single point /' at inlinitv. the only

lilies in the t \\ 1 1 planes which are parallel are those which intersect

in /'. It may he noticed that this properu of a unique direction
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is found also in two intersecting planes, the unique direction being

that of the line of intersection.

A plane is parallel to a hyperplane if they intersect in a straight

line at infinity. Let this line be /. Then any line in the plane

meets / in a point /', and a bundle of lines may be drawn in

the hyperplane through /'. Then each line of the bundle is par-

allel to the given line. The hyperplane meets the plane at infinity

in a plane ///. in which the line / lies. Any plane in the hyperplane
intersects /// in a line /', which has at least one point in common

\\ith / but which may coincide with /. From these considerations

we state the theorem :

V. If <i
//l<nii'

itii'l (i
hj/perjj/diii' arc punillt'1, >ij/

lin<' in f/n' [thine

ix n<t/-'i//i'/ to ,ii<'h Inii' of ,i on mltf in tin 1

lii/pt'i'jiltiHt',
(i nil inn/ j>l<tne

'di'dllcl to tin' ///I't'ii itldtlf.

Two hyperplanes are parallel if they intersect in the same plane

at infinity. Let that plane be m. Any plane in one hyperplane
meets in in a straight line /, and through / may be passed a pencil

of planes in the other hyperplane. Again, consider any two planes,

(Hie in each of the hvnerplanes. They meet in in two lines, /and /',

which intersect in a point unless they coincide. The two planes

can have no other point in common unless they are in the same

hvperplaiie. lleiice we have the theorem:

VI. If in'''
/ti//n'/'}>liitii-x

tin 1

[xtriiUt'I.
i(n

i/ fi/iiin- <>f one I'K I'vttiulctt'li/

iiitridft'l /" *"//('
jiliiin'

iin<l 1ti')i<'t' t n
/>t'/ii-//

i>t'
fifitttrx

"/' ///c of/n r,

iinil <ni if jilitin'
<it o/n- /*

ifitttjilt/ i'ili'itlli'1
to (i n if italic H'fidtt'l't't' of

tin- "///('/' to ?/'/(/'// // /.s
1

//"/
roiiifilitt'll/ /itlt'tlf/t'l.

'I'he anah'tic conditions for parallelism are easily given. The

necessary and sut'ticicnt condition that two lines with the directions

mid lie parallel is that .

I,: /.',
:

<\
: 1\

--
. I

.,:
//

.,:
f

.,:
I>

...

Also the necessar\ and siitliciciit condition that two hyperplanes

.i/ + /;..// i- <\? + />//' + /:/
= o

I
.!.,./

4- r,
:i f c 2 f />,//' + /.'/ = <J

nld be parallel is that .).: /-' :(' : /> I : />'.:
'

'.,:
1> ,
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Since two planes are simply parallel when they intprsect in a

single point at inlinity, the necessary and .sul'licicnt condition that

the two philips (
.

4- r i ii i

{/',' /' < if,, /'/" o J

(1 }

an(i
f

/'

;//
+

\ '!

h

/y
h

/y
( - *

should be simply parallel is that

but that not all tlu- otlu-r t'oiirth-ordt-r determinants of thp matrix

A n c it i-:
1 1444

sliould vanish.

That the t\yo planes (1 ) and ('1 ) should lip completely parallel

their traces on the hyperplane at inlinity must coincide. No\v the

determinants of the matrix

are I'liickcr coordinates for the tract- of the plane. Therefore the

necessary and sutlicielit condition that the t \\ o planes < 1 ) and <
'1 )

sliould he parallel is that the determinants of the matrix

.should hayp a constant ratio to the porrpspondint^ determinants of

the matrix

159. Perpendicularity. In accordance with (
'i ). \ \~>~, t\\o line

with the directions A-.H'J'-.I) and .\:l'.,:<':l> are said to li

[lerjiendieu lar \\ hen

.1 .1. f /; /,' ] c r
i /> /> - it. ( 1
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This condition may be ^iveii a useful interpretation in the hyper-

plane at inlinity. The polar plane of a point .1^: //
}

: z
}

:

/r^
in the

hyperplane t = <K \\'ith respect to the absolute .r+ //"+ /J + i>'~ = 0, is

././-(-// // -f- ~ z -f- n'X' = I >. Fijuation (1) therefore shows that two

perpendicular lines meet the hyperplane at inlinity in two points,

each of which is on the polar plane of the other with respect to

the absolute. Or. otherwise expressed, tin' nci-cxxnn/ <<nil sufficient

i-o/tijitinn t/nif tu'n lini'x ii/-i' in r/>i'ni//'i-/i/iir i* that tlu'ir tritrcx mi tin 1

1 I

iii'intx in tchii'/i t/tf lini' <'<>n)iet'thi// t/ic trnn'x nn-i'tx tin' ulmnlutt'.

A line is said to be perpendicular to a hyperplane when it is

perpendicular to every line in the hvperplane. For this to happen
it is necessary and sufticicnt that the hyperplane meet the hvper-

plane at inlinity in the polar plane of the trace of the line. From

this follows at once the theorem:

/. Tln'i'iti/fi tin '/ [>otnt
i /fin'/' tn "T K'tfl/oitt it li i/[n'l'i'Iit

ni' ni' itml

nit!// nth' #ti'(lii/ht Itni' <'<in /'C ili'itn'n
I'l'/'jn'ml

K'ulii r tn tin 1

It
//i/t'/'/i/itnr ;

dint J/'niii 'till/ [mint in '// i('ttfi<>lit it xtt'itli/rtt ftiti' <>n<' tlttil o)ilif oiif

Since in the plane at inlinity the polar plane with respect to the

absolute of the point A : /': < ': I> is the plane .!./ + /.'// + (

'

-f l>tc 0,

we have the theorem :

II. . 1
////

////<
/'i'/-/'i'/i'//i-i//iir

tn tin- }<///,/>! a,' . LI-+ /;//+ 1
' + i>n<-\- /;=

/nix tin- i/iri'i-t i'i/i A: /': < ': I>. <tn<l '<-///>
/-.s,///.

Any three lines of a hvperplane which are not coplanar, and no

two ot which arc parallel, deteriiuiie three nonrollincar points ot

the trace of the h\'perplaiie at inlinitv. The line perjiendirnlar to

these three lilies passes through the pole of the plane determined

by the three points. Consequently we have the theorem:

///. .1 ////' jn /-jiiii'l
i'-nlii r tn th i->i /inift <>f n

/////" /'['linn'
ii'Jili'Ji it/'i'

In particular the three lines mav intersect in the same point.

( 'i mscfpient ly we have the theorem:

IV. .1 1 1 ni', ni'ii/ / ilnnrn
j i'i

Hilii-nliir to fj/i'i-i' /tniK i ntiTfi'i'tniil

ill 'I ii'iiiit ?o-lf not in tli, Kilnii' liliDli. ill/'/ if />' ///'// /n I'jii
Hit I'-lllil I' tn

f/n
In//" r/i/'in,

1/1 ti riiii/n >l lot tin t/ir< i' lin>*.
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A line is perpendicular to a plane if it is perpendicular to every

line in that plane. From this we have the theorem:

V. It' it Inn- ix perpendicular tn it
1ii/perpl<inf, it t'x perpt'iidicuhir

fn (/'(/// jiliini'
tn tlii- Ii

i/pi' i'pl<i
tie.

The definition of perpendicularity of line and plane is the same

as in three-dimensional geometry. The theorem, however, that from

a point in a plane only one line can IK- drawn perpendicular to it is

no longer true.

In fact, consider a plane / and any point /' in it, and let the

tract- of / on / . l) be the line I.. Further, let // be the conjugate

polar line of /. with respect to the absolute ( sj

(

.lii). Then any point

on /.' is the harmonic conjugate of any point on I., ilence any two

lines, one of which intersects /, and the other //, are perpendicular.

From /'a pencil of lines may be drawn to meet /.'. Therefore we

have the theorem :

VI. All Uiu'x pei'i/end'n-nlar tn <t plane nt it fi.red [mint I!,- in a plane.

Tin' tirn
i,/,l,,i

X ill',' xllelt fluff Cl'crif ////c nf n,u' IX perpendicular tn

, r,
/'//

////, nf the ntln r.

'Ihcse planes are said to be enniplitel i/ peri>endic>diir. Obviously

they do not exist in ordinary three-dimensional space.

The point /'considered above need not lie in the plane/. Hence

we have the more general theorem:

VII. TJl/'nll</li it ml point nf xpace n//e plane, itntl
<>///// mie, eitn It'

pitxxi-d completely perpendicular tn ,/ i/ie, it plane.

\\'ith the same notation as before let / be a ^iven plane, /' a

point which mav or may not lie in /, and /'.I a line perpendicular

to /. where .1 lies on /.'. Through /'./ pass a plane /// intersecting

/ <t in a line .17 through .1. If .17' is the conjugate polar of .17,

.17' intersects /. in a point /,'. 1>\ the theory of conjugate polar lines.

Thru if <
t

> is an\- [loint of /. the line >,>/! lies in / and is perpen-

dicular to ///. Therefore we have the following theorem:

VIII. It ii
jiliii/i

ni cniitiiinx it line
/"'/'/"

'iid icnlit r tn ii
fi/i/ne /, ///

filiin,
I eniitiinix ii line /"/'/" n<l ii'i'l'tr tn ///.

T\\o planes such that each contains a line perpendicular to the

other \\ e shall call xeniiper/iendieuliir planes.
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From ilu- foregoing we easily deduct' the following theorem:

IX. Tin' in'1'fxxiii'il iiinl Nltffifit'ltt f<//ti// f/nif tti'n
jiftith'X xlnnilil fn'

Ki-iiiiiii'i'fit'nilt<'nl<ii'
ix tlnit tin' tniff lit infinity >>' I'itln'i' xhtialil inta'xt't't

in "Hi"
ji'iiiit

th,' fiiij i/i/iitf I'lilnr
i/'ith

ri't/ii'i-f
t" tin- tiliKii/Hti

1

<>t' tin- //'tiff

i,t' tit, "tin r. Tin' nffi'ssiirif (tint xntjifi,//f fntnlitnni (lint t/r
filiiin-x

x/tuti/il />,'
i-ninplt'ttiif jH'rjH'Htlii'iilitt'

IN tlnit tin' trff of fit/n't' nJumhl

In 1

tin' fiiij iii/ntf j><i/(<r
nt' tin' tfiicf nj tin' otl/cr.

It two st'iitipt-rpcndiciihir plain's lie in the same hyperpliuu
1

,

thev intersect in a line and are the ordinary jierpendicnlar planes

of three-dimensional t^eometrv. If two seiniperpendicular planes

are not in the same hvperplane, thev intersect in a single point. It

this point is at infinity, the two planes are also simplv pai'allel.

In these crises the traces I. and M intersect in a [mint <\ which is

harmonic conjugate to both A and //. From this follows the

theorem :

X. Tn'" wtnivi'rpt'nilit'iilur jrfmn'H nntit In
1

tdnijilif itrnUi-l. Tin'

</i/-fffi"tt i

if tin' /"d-K/lfl Uin-x if tin' t H'n ji/n/tfx /.v tin- n <>rt lt<i<i<nntl t"

tin' lUl't'l'tioHIS "J tin'
l>f/'l>f/ti/t''H/i(r

//itfx.

It is to he noticed that in this case the direction of the pai'allel

lines is similar to that ot the line of intersection of sennperpen-

diciilar planes in the same hyperplane.

A plane / is perpendicular to a hyperplane // when it contains

a normal line to the hyperplane. The trace I. of the plane then

passes through the pole of the trace // of the hyperplane, and the

conjugate polar // of I. lies in //. Therefore:

XI. It ii
/>/ii

/if /.s-
/if/'/if/K/ifii/itr

f" ii
fitf/H'/'ji/iini

1

, it i'x
f"in/il,'t,'l i/

/"/'/" inlifiil<i r tu , -iii-lt
jiliiin >f <i

jn-iifil if jKiriilli
I

/'/it/ifx
'it' tin- Ii

if/if
r-

liliiin-
iiinl xfiiiifn I'IH

tnltfiilnr t" ,1-,'rn i>f //,/
filiini'

"t' tin'
luijii'i-jilii

in-.

The angle hetweeii two livperphincs mav he dclined as the angle

between their normal lines. Ileiice two hvperplanes,

.(..' f
/',//

f
'\'-

+ /V + ^-V

and A ./ f //,// -f ('
.; -f />// + E > 0,

are jierjieiidiciilar \\hen and onh' \\heii

.1.1 f /.'/', + ('.(' f l> l> 0.



POINT t'OfWDIXATKS 377

This is the condition that the tnu-cs at infinity of the two hyper-

planes ure such thut each contains the pole of the other, as might

he inferred from the definition. From this \ve have the theorems:

XII. It t n'o ht/perplanfx <i/'i'
pi'/'pt

' ml ii-iil iir, the normal f eith> r 1 i'tn

(tiii/ i>nint <>t tliftr intersection //<* /// tin' other.

XIII. Ant/ hyperplane paxxi'il thmuah a normal to another hj/per-

pltine ix perpendicular t<> t/iat Jiyperplane.

Since in t () the intersection of two planes is the conjugate

polar of the line connecting the poles of the planes, we have the

theorem :

XIV. TJte plane <>f intersecttun of (tea perpendicular hyperplane* i*

evinplt'tely pt'i'pi'tnliL'uhir
to <t/i// plant

1 ileterinined l>t/
tic<> t/ttcr'Nt-fttnij

nvrmalx to //< hyprrplant'8.

In tln j

hvpcrplane at in I'm it v we may, in tin infinite number of

wavs, select a tetrahedron AH('I) which shall he self-conjugate with

respect to the absolute. From any finite point <> draw the lines

<>.l, (>!;.<)('. <>/>. \\V have a configuration, the properties of which

are given in the following theorem :

XV. From auij jioint in xpai-e nuiij of drawn* in a/i infinite number

of trail*, foi/r inuttuillii perpendicular line*, h't't't'// tln'ee of these lin>'x

Jetet'i/ttnex <i
Jti/pet'plitne perpendicular to the

//_///>(//'/<//' determined

liil iin// other three. Every pair <>t the linex determines a plane which

i* completely perpendicular to tlmt determined
/<//

thf other pair of

the linex,

A sjiecial case of the configuration described above is that formed

by the coordinate hyperplanes A = U, }'
-

0, 7, = 0, \Y -- 0.

1\ (
ti ), ^ Io7, the cosines of the angles made with the coordi-

nate hyperplanes by the livpcrplane

"' + K=

\
. /- + /; -f (

'- + />- \
. i

- + /' -f '
''

when ./- f /;-+ r- f- //- i- U.
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\Yc may denote these by /, >n, //, / respectively, and write the

(([nation of the hyperplane in the form

fa 4 my 4 HZ + rw 4- />
= 0,

with /" 4- //r 4- >r 4- >"" = ! The equation is then in the normal form,

and it is easy to show that
}>

is the length of the perpendicular

from the origin to the plane. Also by the same methods as in

three-dimensional geometry we may show that the length of the

perpendicular from any point (r , // , z
{

, tc ) is fa -\-iny +nz+rw-\-j).
Let us now take any configuration described in theorem XV,

and, writing the equation of each of the four hvperplanes in the

normal form, make the transformation of coordinates given by the

equations in nonhomogeneous coordinates:

j-' = // 4-
///,//

4- r
7 + r

i"' + /'i'

//' = /
v
r 4- /"

4// 4- /'/ 4- /V'
1 + /' 4

'

with the conditions /-'4- ///j4- /<: 4- r'~ = 1,

//j.4- '"," l
i.
+ tl

,

fl i-^~ r,'V
= "

( ' ^ k}

The new coi'irdinates are the distances from four orthogonal hyper-

planes, and, in fact, our discussion shows that the same is true of

the original coordinates.

In the new system the equation for distance is unaltered, namely,

'/ = v'( j\,
-

.'; r 4- < !/',

-
//; >

3+ < *a *i >' + < "',
-

n'\ ),

and if we place //' we have the ordinary Euclidean geometry
in three dimensions. This justilies the statement already made in

anticipation, which we now t^ive as a theorem:

XVI. In
j'<iit/'-(li//ti'iixlnti'il Kiirliilt'dii

x/nii-i'
t/it' i/i'iinii'f/'if iii (in>i

/ti//r/>/<i/i<\ fuf ii<hi'-li .\--\- /:-+ C~+ //- 0, IK ttmt <>f (/' tixttnl

thri'i'-iltint'tlxiumil I'liii'I nli'H n </fi>un't ri/.

160. Minimum lines, planes, and hyperplanes. In the discussion

of the previous section we have had to make exception of the rases

in which the direction quantities ./, /.',
<

', /> satisfy the condition

J -+/'''-' 4- ''- 4- />'-=0. (1)
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We shall now examine the exceptional cases.

Obviously the necessary and sufficient condition that the direction

quantities of a straight line satisfy equation (
1 ) is that the line inter-

sects the absolute, or, in other words, that the trace at infinity of the

line lies on the absolute. The necessary and sufficient condition that

the quantities J, />', <
'. I > in an equation of a hyperplane satisfy ( 1 ) is

that the trace at infinity of the hyperplane is tangent to the absolute.

In this case the hvperplane is said to be tangent to the absolute.

The straight lines which intersect the absolute are the minimum

lines of three-dimensional geometry.

In fact, the hyperplane //' = <), which by theorem XVI. ^ l-~>
(

.,

represents any ordinary hyperplane, meets the absolute in the imag-

inary circle at infinity, and the lines in the hvperplane which meet

the absolute are therefore the minimum lines of the hyperplane.

Also, if any line meets the absolute in a point /'. a hyperplane
can evidently be determined in an infinite number of ways so as

to contain the line and not be tangent to the absolute. We have,

therefore, nothing new to add to the three-dimensional properties

of minimum lines.

In four-dimensional space there go through every point -f.

~

mini-

mum lines, one to each of the points of the absolute. These lines

form a hypercone. A hyperplane through the vertex intersects the

hvpeivone in general in an ordinary cone of minimum lines, and a

plane through the vertex intersects the hypercone in general in two

('onsider now any plane. Its trace in the hyperplane at infinity

is a straight line which may have any one of three relations to

the absolute: ( 1 ) it may intersect the absolute in two distinct

points: cl) it may be tangent to the absolute: (''>) it may lie

entirely on the absolute.

The first case is the ordinary plane, the second the

plane of three-dimensional geometry. In fact, if an\

character ( 1 ) or ( '1 ) is given, it is clearly possible to tin

plane which will contain it and not be tangent to the absolute,

The ordinary plane is characterized hv the property that through

any point of n <n> two minimum lines, and the minimum plane of
I r"l I

three-dimensional type by the property that through every point

of it 'roeS OIK
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The third type of plane is, however, not found iu the ordinary

three-dimensional geometry. For if a plane meets the absolute in

a straight line, any hyperplane containing it contains this line and

therefore intersects the absolute in two straight lines. The geometry
in this hyperplane is therefore a geometry in which the imaginary
circle at infinity is replaced by two intersecting straight lines. Its

properties will therefore differ from those of Kuclidean space.

A plane at infinity intersecting the absolute in two straight lines

is tangent to it. Therefore a plane of the third type lies only in

hvperplanes tangent to the absolute. A unique property of these

planes is that any straight line in them meets the absolute and is

therefore a minimum line. In other words, the distance between

any two points on planes of this type is x.ero. \Ve shall refer to a

plane of this type as a minimum jilnnf <>f t/n- xi'mml kin<L

Consider now a hyperplane which is tangent to the absolute.

The equation of such a hyperplane is

AJT + />'// + Cz + !'> + K =

with A~+ />'"+ f'~+ I>
2 = 0. From analogy to three-dimensional

geometry we shall call such a hyperplane a minimum Jii/perplane,

It has already been remarked that in a minimum hyperplane we

have at infinity two intersecting straight lines instead of an imagi-

nary circle. There will be a unique direction in the hyperplane;

namely, that toward the point of intersection of the two imagi-

nary lines at infinity. For convenience we shall call a line with

this direction an n.rfx of the hyperplane.

Through every point of the hvperplane goes an axis, and through
every axis go two minimum planes of the second kind, each con-

taining one of the two intersecting lines at infinity. Any other

plane through the axis is an ordinary minimum plane. The cone

of minimum lines through a point splits up, then, into two inter-

secting planes.

Any plane not containing the axis intersects the absolute in two

distinct points and is therefore an ordinary plane.

Since a minimum hvperplane intersects / -
-

<> in a plane tangent

to the absolute, the normal to the hvperplane passes through the

point of tangeiiey, which is the point of intersection of the two

straight lines at infinity. Hence the axes of a minimum, hyperplane
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are the normals to the hyperplane. The axes are therefore normal

also to cverv plane in the minimum hvperplane.
Let the plane of the li^nre ( Fi^. till

)
! the plane of intersection

ot a minimum hyperplaue with the hyperplane at inlinitv, and let

the two lines <>,{ and <>/! be ihe intersection of the plane with the

absolute. '1 hen, it /, is the trace ot any ordinarv plane, the normal

to the plane passes through <> and is an axis of the hvperplane.
Two ordinary planes in the minimum

hvperplane, therefore, cannot be per- / r

pendicular to each other.

But consider a minimum plane of

the Iirst kind whose trace on the hvper- \

plane at inlinitv is the line <><). The

conjugate polar of the line <><,> is a line
'_

<>!(. Consequently anv two minimum

planes of the iirst kind whose traces /

are <
t

> and <>/,' respectivelv are com-

pletelv perpendicular. This state of

two completely perpendicular planes

Ivin^ in the same hvperplane cannot be met in an ordinary hyper-

plane and is therefore not found in Euclidean geometry. This

is due to the fact that in an ordinarv hyperplane only one mini-

mum plane can be passed through a minimum line, while in a

minimum hyperplane a pencil of minimum planes can be passed

through an axis of the hvperplane, and these planes are paired

into completely perpendicular planes.

Finally, it mav be remarked that a minimum plane of the second

kind is, in a SCUM-, eompletelv perpendicular to itself, for the lines

<>.! and <>!'> are each self-conjugate.

For the sake of an analvtie treatment let us suppose that a

minimum hvperplane has the equation z - /"' = ", and let us make

the uonorthogoiuil change <>f coordinates expressed hv the equations

z' --- z + hi',

a-' == 2 in'.

Then the formula for distance becomes

<r~-- ( .' .', r + 1 >f.,
-

'/, 'r + ( .?' :
', > <

"' - "! ).
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In the hvperplane //'<> a point is tixed by the Coordinates

a; i/, ~', and the distance between tun points becomes

I =
(>',, '',

>"+ (//., //!
)"

The equation of the two straight lines at infinity is

/' + >r = 0,

and the e<piations of anv axis of the hvperplane is ./ ./, //
=

//,,.

In the formula for distance the coordinate z' does not occur.

Hence the distance between two points is unaltered Ity displacing

either of them along an axis.

Consider the equation

(''
-

'' )" + (.'/
-

.'/)
= ""

This represents the locus of points at a constant distance <> from

a fixed point r
(i

,
//.^

.r. where .r is arhitrarv. From the form of the

equation the locus is a cylinder whose elements are ;ixes. Kvcrv

point on the cylinder is at a constant distance <i from each point

(>f the axis ./ = ./ , //
=

>/ .

The almvc are some of the peculiar pro|iertics of a minimum

hvperplane.

161. Hypersurfaces of second order. Consider the equation

^\ ',./;/',= (nti
=

-/.. > (1)

in the homogeneous coordinates of a four-dimensional space in

which no hvperplane is singled out to In- given special .significance

as the hyperplane at infinity. The sp;icc i>. therctdrc. a projccti\c

space. The student will have no difficulty in showing, by the methods

of ;j s^. that the coi'u'dinates may. if desired, be interpreted a-

equal to the distances from live hvpcrplanes. each distance multi-

plied bv an arbitrarv constant. However. \\ e shall make no use of

this propertv. and men t ion it onlv for the analo^ry bet ween t he present

coorilinates and ijuadriplanar eoi'inlinates in three-dimensional space.

Filiation ( 1 > represents a hypersurfacc of the second order. It'

//
and : are anv fixed points, the line

p.r
=

/f
t
+ \: ( -2 )

intersects the hypersurface in LTciii-ral in t \\'o distinct or coincident

points or lies entirely on it. Therefore anv hvperplane intersects

the hvpc-rsurface in a two-dimensional extent which is m,-t bv anv
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line in two points and is therefore a quadric surface, or else tin 1

hyperplane lies entirely on tin- hypersurlace. Similarly, any plain'

intersects the hvpersnrt'ace (
1 ) in a conic or lies entirely on it.

Let us consider these intersections more carelullv. It in equa-

tion (
'_' ) the point //,

is taken on the hypersurface, the line will meet

the li\ persurfaee (
1

) in two distinct points unless the donation

5>*'/A=o <
:;

>

is satisfied l>v the point z
t

. In the latter case the line ( '2 ) meets

(
1

) in two points coinciding with
//,,

unless also z
t

is on the hyper-

surface, in which case the line lies entirely on the h\ persurfaee.

'This means that if
//,

is on the hvpersurlaee (1 ), any point on

the hyperplane '' = 4

but not on the hvpersurface, if connected with
//,,

determines a

straight line tangent to the livpersurfaee, and this property is

enjoyed l>y no other point. Hence the hyperplaue is the locus of

tangent lines at
//.

and is called the tuti'/ftif fij/jn'rj>tttHf'.

The hvperplane (
4 ) intersects the hypersurface in an extent of

two dimensions which has the property that any point on it deter-

mines with // (

a line entirely on it. It is the re fore a cone of second

order. Therefore, ////"////// >i/tf/ [>"int of thf hi/fH'rxurfnfe i/'x'it <i <-/^'

nt xfi'titt/Jtt /t//i'x ///n/i/ 1'iitii'ili/ nit tlic li i/JUT*!! rt <ii'i'.

An exception to the alioye occurs when
f/

is a point satisfying

the e(
1
uatio,,s ^ + ,,^ + ^^ + n ^ + if^ = 0-

(

-

}

Such a point, if it exists, is a sint/nliir pm'nf. At a singular point

the ei|uatioii of the tangent hyperplane becomes illusive. Any line

through a singular [>oiiit meets the li\ persurfaee in two coincident

points, and it an\ r

point on the hypersurface is connected with the

singular point by a straight line, the line lies entirely on the hyper-

surlai'e. I-.i
|

nat ions
(

>
) do not always liave a solution : but it they

have, the solution is a point of the surface, since equation (1 ) is

111 Hill '^enrolls.

1 1

//,
is any point . whether on t he hvpersnrface or not, equation (

4 )

deli i icv a hvperplaiie called the /m/iir In//n //
>/<i>/f of // . It t he equal ion

ol the polar hyperplane is \\rilieii in the form
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I- rom this it follows that anv point has ;i definite polar hvper-

plane. Tin' converse is true, ho\\ e\ er, onlv if the determinant

docs not vanish. The vanishing of tliis determinant is the necessary

and sufficient condition that equations (.V) should have a solution.

Therefore we sav :

If <i
Jii/perpl'im' of t/u 1 ai'i-ond ofili'r tun* n<> Kinc/ulnr points, to ft'iT//

pint in xy/<v fvrrcxptnitlx <>
i//i/i/><f /><i/<tr Jii/perplctne, <tnd to <T<T>/

liifpfrplnnc w/v.*y>"/f<7* n
n/i/i/tn' /><//,>.

'/'//> ni't'efwury and sufficient c<t-

<liti"tt f<>r ////x /// in-fur /x tloit tin 1 discriminant <i
i/c \

should not vatilsli.

If the hvpersurfaee lias a sin^nlai
1

point, it is easv to see that

I'very polar hyperplane passes through that point. Therefore onlv

hvperplanes through the singular points can have poles.

The properties of polar livperphines are similar to those of polar

planes of three-dimensional ^eonx't ry. and t he theorems of ij It '2 niav,

witli slight niodilicat ions, he repeated for the four dimensions.

AVc mav also employ some of the methods of !>3 in classi-

f\ iii^' hvpersnrfaees of the second oi'der. Let us take the general

case in which no singular points occur. There is then no dif'ticultv

in applving these methods to show that the equation mav he

1T(IU(T(1 l "
,T+ ,.; + ,.^,.;+,.^,.

The cases of h\
p

|

icrsurfaccs wit h singular points are more tedious

if the elemeiitiirv methods arc used. It is preferable in these cases

to use the methods of elementary divisors.

162. Duality between line geometry in three dimensions and point

geometry in four dimensions. Since the straight line in a three-

dimensional space is determined l>v four coordinates, it will he

dualistic with the point in four dimensions. In order to have

coordinates of the four-dimensional space which arc dualistic with

the Klein coordinates of the straight line, we will introduce hexa-

spherical coordinates in four-dimensional space analogous to the

pent aspherieal coordinates, of three-dimensional space.
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Fdllo\\'in^ tlic analogy of ^ 117. 1 ~'-\, let us place

p,\=lz

p.r.= -2H\

p.r6
= /( .V'-' + Y-+Z-+ II'

2 + 1 ). ( J )

where rf + r.r-f- ./.: + ./; + ,/v + ./-,:
= <.

The coordinates.;', are hexaspherica] coordinates. The locus at

iniinitv has the equation j- -f /./-
(
,
= 0, and the real point at iniinitv

has the coi'.nlinates 1:0:0:0: : /.

The e(|iiation

is that of the hvpersphere

There an- four varieties of hyperspheres :

1. Proper hyperspheres,
^ '/:<>, a 4-

''',.
0.

'2, Proper hyperplanes.
N ,,~ =+ o^ , f .

'>. Point hvperspheres, 'V/^:=0, n -

\. .Minimum hvperplanes, ^'',
J " (l

, f/ +//^
f
=0.

( )n the other hand, we mav interpret the coi'irdinatcs .?-
(

as Klein

coordinates of a straight line in a space of three dimensions.

For convenience we will denote l>v >'.. the three-dimensional

point space in which .?. are line coi'irdinati's, and l>v ^i. the t'oiir-

d miensii >nal point spaee in which ./, are hexaspherical ctiJirdinates

of a point. Then the coordinates 1 :
<i

: : : <> : /. \\hieli in !i

repi-eseiit the I'eal point at inlinitv, represent in ,s' a straight line /.

wln'eli has no peculiar relation to the line space. In tact, /acquires

its unique significance onlv liccause of its dualistie relation to ^ .

Also the equation ./ 4- ''.'',,= 0, which, in , rc]irc>ent< the hvper-

plane at iniinitv, represents in N a special line complex -. o| which

the line / is the axis. With these preliminar\ remarks \\ e mav

e.xhihit in parallel columns the relation Ketxvecii .s'. and 1
(

.
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2 >'

Point.

Real point at infinity.

Proper hypersphere.

Lino.

Line /.

N on special line complex not con-

taining /.

Nonspecial complex containing/.

Special complex not con taming /.

Axis of special complex,

Special complex containing /.

Special complex f with axis /.

Proper hvperplane.

Point liy jiersphere.

('enter of point h vpersphere.

"Minimum hyperplane.

1 1 vperplane at intinity.

Two points on same minimum Two intersecting lines.

line.

Any imaginary point at intinity. Line intersecting /.

Points common to t\vo hvper- Line congruence.

spheres.

Vertices of two point hyper- Axes of line congruence.

spheres which pass through the

intersections of two hvperspheres.

Circle defined by the intersect ion Regulus.

of three liy persplieres.

Two circles such that cadi point Two re^uli generating the same

of one is the center of a point hyper- qiiadrie surface.

spliei-e passing through the otlicr.

The use of liexasplierical coordinates gives a four-dimensional

space in which the ideal elements differ from those introduced liv

the use of ('artesian coordinates, as lias been explained in ^ \'2'-\.

Such a space is in a one-to-one relation with the manifold of straight

lines in S .

It \vc wish tn retain in ii the ideal (dements of the ('artesian

geometry, the relation between A', and ~
(

ceases to be one-to-one for

certain exceptional elements. T<> show this we will niudifv c(|na-

tions (
1 ) bv introducing homogeneous coordinates in and have

PJ\
- .''+ <r f r-f "'" f",

p.r '2 ./'/.

pjr 'I >/t,

p.i'.
- "'f.

p.t\.
= i ( .r 4- //- 4- r 4- ii'- +
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If we use these equations to establish the relation between the

lines nf .s' and the points of ^, we shall have the same iv>ults

as before, with the following exceptions, all ol which relate to the

ideal elements of ^
4

. Anv point in i
4
on the hyperplane at inlinitv,

but not on the absolute, corresponds to the line /: and the line /

corresponds to all points on / n
, but not on the absolute.

Anv point on the absolute corresponds to a line in .V which at

tirst sin'lit seems entirely indeterniinate, but if we. write equations

( o ) in the form

it appears that a point on the absolute corresponds to a line for

wllirh
V-'V,

= 1 :<', .V.r ;

:.V .r = ,://:-//.

This is a one-dimensional extent of lines. One line of the extent

is alwavs /, and another is I : j- :
i/

: z : tr : i. The general line mav

be written as ( 1 4- X ): ./ :
//

: : : ir : /( 1 -f X ). I>y ^ 1 '-\\ the extent is,

therefore, a pencil containing /. Then, to any point on the al)solute

corresponds anv line of a certain pencil containing /.

It is easv to show that auv line \\hich intersects / correspoiuls

to a definite point on the absolute.

It is, of course, possible to interpret equation t = in equations ( '])

as the equation of anv hvperplane in a projective space with the

coordinates -/'://: ? : "" /. The absolute is then replaced bv a (piadric

surface <l> in the hvperplane t = ". The correspondence between

A', and ^
(

is then less sjiecial than the one we have considered.

EXERCISES

'2. 1'ctiiie inversion with respect to a li\ perspheiv /-'in i and slio\v

tliat t\vu inveixc points with respect to /' coi-iespoiid to two lines in

>', which are conjii^ate polars with respect to the line complex which

corresponds to /'.



CHAPTER XX

GEOMETRY OF N DIMENSIONS

163. Projective space. \Ve shall say that a point in n dimensions

is defined lv tin' // ratios of n -f- 1 coordinates; nainelv,

(V)

The values of thi' coordinates may be real or imaginary, but the

indeterminate ratios 0:0:--':U:0 shall not be allowed. The

totality of points thus obtained is a space of n dimensions de-

noted bv \.
A straight line iu \ is defined liv the equations

pj\
=

.// i +Xr,, (/ = !, 2, ...,/<+!) (-2*)

where
// r

and ^ are constants and A is an independent variable.

( )bviously //
(

and z
i

are coordinates ot two points on the line, which

is thu> uniquely determined bv auv two points in ,s\ Also, any

two points of a straight line may be used to define it.

A plane in \ is ddined by the equations

psffi+XZi+ pit';, (4=1, 2, ..., H+l") (})

where
//,,

z
:

, n\ are the eoi'irdinates of three points not on the same

straight line, and X, fj.
arc independent variables. Therefore a plane

is unii|iiclv determined by anv three noncollinear points of ,s'
:i

, and

an\' three siieh points on a plane mav be used to detine it.

In general, a manifold of / dimensions lying in .S'
n may be defined

bv the equations

X
//'.- 4-

where
//

are eonstants not connected bv linear relations of the same

form a-- ( 1 , and X, are / indcpcndelil \ariables. Such a manifold

is called a ////-.//
.vy/i/r,

-./'/ ill iin-iisi' i/is and \\'ill be denoted bv .S'
r
'.

It i- alxi railed an /-//'//. A straight line is therefore a linear space
ot one dimension < .s',' ). a plane is a linear >paee of t \\ o dimensions
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('S'.,'), and ,S'
t

itself is a linear spurt- of // dimensions. From the

drliiiit inn follow at oiirr tin- theorems:

/. ,1 lint'iir
xjnii-i'

nt r Ji uii'iixinnx ix n n
iifiii'l i/ ilitiriiniiiil I**/ iini/

r -\- 1 i>nintx at S
n

iinf ////iii/ />/ it hiiiiir
ftjiiift'

nt /n/t'i'/' ili/m -iixin/ix, ni/i

(in// / -f- 1
jiuiiitx

nt' tin ,s'' mill/ In- iixi-il fn ili'tliii' it.

II. .1 lint'iir K/iHd' nt / (Itiin'itxt'ititi ix ili'ti'i'iniiiiil 1'if it Itiii'iir
.*-//<>'

of r ] (hnu'iiiscuix /i/ii/ iini/ fiiitnt
nut in tl/iit hitter

xjnii-i'.

It is t-asv ID srr that a linrar spare of n \ dimensions is also

defined 1>\ a linrar etjuation

which is analogous to the equation of a plane in three dimensions.

An ,S'
;

'

,

is therefore called a
7t//j>t'i'j>/<itH'.

It is also easy to see that the coordinates j\ which satisfy eqiia-

tions (4) satisfy n r equations of the form (
"> ), and ronverselv.

Therefore

///. .1 littfitr
x[><i<;>

lit' r ill iiii'itxinnx null/ In- il,'t;n< <l lij n r liult'-

jit'/ntt'/it
///ifiir

i'i/i/iiti"/ix,
iini/ tx t In ri'J art' tin' i/iti'/'xi'i-t/n/i i>t' n r

/It/jn'rji/il/it'X.

In A'
ri

we shall be interested in projertiye geometry: that is, in

properties ot the space which are unaltered by the transformation

where the determinant <<
ik

does not vanish. Accordingly, it we

are concerned with Lj'romrtrv in an A'' we may equate to -\,.,.,,

.V. .., , X
tt , ,, respectively, the left-hand members of the it r

equations which define it, w hile lea\"in^ ./ . ./.,, , ./; ,
unchanged.

No\\' placing .\'
r .... -\'

r ; .,,, -V
;i , , equal to /ero. We have left the

/ -1-1 homogeneous coordinates
./'j,

./.,, , .r
(
,

,

to drlinr a point in N' .

It follows that an S', is an X^ \\ ith a smaller number ot dimensions,

and that any projertiye properties ot .s'
;i
which are independent o|

t he value ol // apply to an v X'.

Resides the linear spaces tin-re may exist in N other spaces.

Such spaces may be defined by equations ot the torm

p.i
=

(/> < X r \... , X ), ( 7 )
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where
(f) t

are functions df / independent variables X
4

. If $_ arc

algebraic funetions, equations (7) define an alijiJirnit' *!"<>>'.
If we

substitute the values of .r from (7) in the / equations,

which define an N'
,.,

\\~e shall lia\f / I'ljuations to determine the /

\ arialilcs \
;

. The solutions of these equations used in ( 7 ) ^'i\'e the

nuinlter of points of the space (7) \\hieh lie in an >s
''

,.
Let this

nuiul>er lie//. Then
//

is called the //-<// of tin- space (7), and

that space is denoted lv ^/. \\here / ,n'i\'es the dimensions of the

space and // the number of [>oints in \vhich it is cut l>y a general \' ,..

Thus
N,-' represents a curve which is cut 1>\ anv hvperplane in

_</

points, and S-'
t
_

,
a hvpersurface \\ hich is cut l>v anv straight line

in 1 1 points.

A spaee N'.' mav also he defined l>v // / simultuneous eijiiations.

I suallv the same sjiace mav l>e rejtresented 1>\- eithei- this method

or I>v that of equations (7), hut sometimes this is not possible.

If N^, is represented bv a single algebraic eipiation, // represents

the degree of the equation. If N'.' is represented bv n r eipuitious,

//
is in general the product of the degrees of the equations.

In this chapter \ve shall conline our attention to \~ ,
delined by

the eoiiation

and sections of the same.

164. Intersection of linear spaces. Consider two linear spaces

N,' and .s',.' . A point ./ . which is common to the two. must satisfy

the 'In r
/., equations in n -\-~\ homogeneous variables:

+
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We have three cases to distinguish:

I. It '2 n r
t

-
/, > ;/, equations ( 1 ) have in general no solution.

There results the theorem :

7. 7V/; Inii-iir
xjiiti'i'x

S
r

(inil S
r

hiii't
1

//i iji-HiTnl /in
jmi/it in I'linini'in

ic ft en i' + / < //.

For an example consider two straight lines in ,s' or a straight

line and a plane in ,s\

'2. If '1 n /
/_,
= //, equations ( 1 ) have in general one solution.

There ivsiilts the theorem :

II. T/t'n luifiir
xjitti-i-x

S' it/ii/ S'. niti'i'Xi'rt til i/fin'/'il/ ill "in- ji"in>

ti'tn II /' + /'.,
= "

Kxamples are two straight lines in ,s'
|(

a line and a plane in S

and t wo planes in ,s' .

:!. It' 'In
/',

''.,
< " equations ( 1

) ha\'c in general an infinite

number of solutions. Let us suppose that / + / = /i -f- </. The

number of eijuations ( 1 )
is then n it, and tlu i

y therefore define

an S'
t

. Thei'e results the theorem:

///. TII'" Inn-ill' XjuK-i'X
S

r
/l/>il N', U'luTe

/"j + /'
r
=/< + (/, ilttt'l'iSt'Ct

III if' lli'l'ill in tin N
(

.

Examples of this theorem ai'e that in S
:

two planes intersect in

a straight line, and that in >>'

(

two hyperplanes intersect in a plane.

< )f course an\" two linear spaces mav so lie as to intersect in

more points than tin- above general theorems call for. Let us snp-

po>e then that S' and ,V' intersect in an N[. Now >'.' is defined bv

/',
-i- 1 points, of which <i +\ ma\' be taken in S'

t

. Sinnlarh'. S'
r

is

defined b\- /+! points, of which <i + 1 ma\ be taken in S'
t

. If,

fore, we take // + 1 points in \
(

'. J\
it other points in N' but

ot in
.s'|.

and /.,
- <i points in S'_ but not in

.s',,',
we have /,+ /'.,-//-(- 1

points, \\hii-h ma\' be used to define an N'
u . This S'

,
con

tains all of \' and all of N' since it contains
/',
+ 1 points of the

former and /*.,+ ! jioints of the latter.

Thereli ire \\ i ha\'e the theorem :

IV. If N' ////-/ ,S'
:

'

i/ttf/'iti-rt i,i mi S'
t

. th.'il In- in <//< S'
, a .

An example of this theorem i> that in N if t\\n sti'ai^ht lines

( .s',' ) intersect in a point (
N' ), thc\ lie in a plane (>'.'). Another

ter

n
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example is that in \ if two planes ( .s'_!
) intersect in a straight

liiu' ( N,' ), they lit- in an
.s'[.

Conversely, we have tin.* theorem:

V. If S
r

ini'l .s'
r

'

lit' in an X'm (tn < /? ). tin-// i/if>'w<-f in on S'
.

'

: i
'

i

* '

i
m

if r, -f- r., i in.

This is (inly a restatement of theorem III, since l>v the previous

seetion we have only to consider the \'_ in which the t\vo linear

spaces lie.

Similar theorems may be proved for the intersect ions of the

curved spaces N'' 1 and A'
:

'-'. These we leave for the student.
'i .

EXERCISES

1. Show that the hvjierjilitiics in ,s'
;i
inav be considered as points in a

space of n dimensions ^
/(

.

2. Show that if
>',';i

contains
// 4- 1 points of N

;

'

it contains all

points of V.

3. Show that through any S[. may lie passed x""*" 1

liy pt-rplaiies,

anv /( 1; <>f which deterniine >\' : that is. in the notation of Kx. 1 any

S[ is coiimion to a
,',
_ A

. . ].

4. Shnw that two algebraic spaces S''
t

and S 1

^'.
do not in general

intersect if /// -)- ///'< /t, and intersect in an .\'
y

if /// -)- ///

' = n -\- n.

5. Show that every >';,
is contained in an >','.].

6. Show that every curve of order y is contained in a linear space of

a number of dimensions not superior to </.

165. The quadratic hypersurface. The equation

detines iu i .^" ,,
\vhieli \ve shall call a ifUdilnitii

1

liifperxurfiii*? or,

inure concisely, a
>jt(i.(<(r'.

For convenience we shall denote the

surface by
c^>.

to values of A. e^iveii by the

XJV '/ :: = 0. :}
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If ^<( ij/ l

2
li
.= n

i tin.- points // i

and z
t

are harmonic conjugates with

respect to the points in which t he line ( '1 ) intersects
c/>,

and are called

i'<tnjnt/iif,' im'nitx. Therefore, it
//

is lixed, any point on the loens

is a harmonic conjugate of
//,.

This loeus is a hyperplane called

the
i'1'litr l////T/>/<i/tt'

of
// i

with respret to the qnadric.

If ii
(

is also on the qmulric, both roots ot
(

;>
) are y.ero, and the

line (-) touches the hvpersurface in two coincident points at
//,,

or lies entirely on
<fi.

The polar (4) then becomes the tangent

hvperplane, the loeus of all lines tangent to <> at
i/ t

. In no other

east.' does the polar contain the point //,.

It follows directlv, either from the harmonic propertv or from

equation (
-I ), that it a point /' is on the polar of a point (,', then

(
t
> is on the polar of /'.

More generally, let
//,

describe an S'
r
defined bv

P.'/i
=

U\
'' ' + ^i//."

' + + X,.//'/'

'

".
(
5 )

The polar hvperplanes are

\ allies of .r
r

co in n ion to these hvperplanes sat is fv the / + ! eipi at ions

^",///.'V-
n

< (/- 1, 'J, -, r + 1 ) (J)

and therefore form an /\'_,._,. The t\\o sjiaces ,S'
;

'

and .V'
r _, are

I'unj ii'/nti' /inlnr xiiitcfi*.
Kach point ol one is conjugate to each

point of the other, ('on jugate polar lines in A'., form a simple

exam] ile.

If the equation of the polar hvperplane is written in the form

pit k
-

", A //,- ( )

i

I.ct us consider first the case in which the determinant <i
t

,

\\hich is the tl/vi-ri//iiii<oit of
( 1 ), does not vanish. Then if the

(plant it it's
it,

in (7) are replaced bv /.ero, the equations ha\e no

solution. 1 heretoi'e all possible \alues ot // >_;'i\e definite values ot

/', which cannot all become /.ero. A^'aiu, equations (7), as they
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stand, can IK- solved for
//,,

so that any assumed values of n
(

. deter-

niiiu' unique values of
//,

which cannot all lie y.ero. Summing up,

\vi- have the theorem :

//' tli,' ilixrrhnhmnt <>f </>
rA^-x nt vanish, erf/-// [mint f S

n
Ixm n

dt'finiti' i>"l'ir lti/]>t'rj>l<tnt',
<tnil ct't'ri] hyperplane in N

(

/x (lie
/><>/<>/

ct' (i di finite jxit/tt.
In piirticuhtr, itt t'Ct'fif pmnt J tlici'i' /x <t

d> fluid' tititi/fiit /i/itiii'.

Consider now the case in which the discriminant u/,! vanishes.
I

'A.
I

There will then he solutions of the equations

2"*&=0. (A-
= l, I',..., //-f 1)

. i

Any point whose coordinates satisfy (S) lies on $, since its

coordinates satisfy the equation

and is called a singular point of $.

( )l)viously, at a singular point the tangent hyperplane is indeter-

minate, and in a sense any hyperplane through a singular point

may he called a tangent hyperplane.

Equation ( > ) shows that any line through a singular point cuts

the qliadric in two points coincident with the singular point, which

is thus a double point of the quadric. It also appears from (
-I

)

that any point of
(f) may be joined to any singular point by a straight

line lying entirely on <>.

Any point //,
not a singular point has a definite polar hyperplane

X- n \
f

, n I

V ; V" ,'/ -./, = ;

^^^ ^ '

* 1 ,1

and since this may be written

i

- n I

(
* f 1

]V j V ,/,,,-. //, o,
, 1

I. * - 1 J

it passes through all the singular points.

The number of the singular points of
(f)

will depend upon the

vanish ing, or not, ot the minors of <i
tk

. In the simplest case, in which

n
^

vanishes but not all of its lirst minors vani>h, ecjuations (S)
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have one and only one solution, and
(/>

has one singular point.

Therefore the quadric consists of x " '
lines passing through the

singular point.

Suppose, more generally, the minors of n
it

which contain // + 2 r

or more rows vanish, but that at least one minor with u +\ r rows

does not vanish. The equations (S) then contain /i r + \ inde-

pendent ('(illations, and the singular points therefore form an X'
r _ r

The quadric is then said to be r-f<>t'l x]'<'inliz<'(J.
The number r is

so chosen that a onefold specialized quadric has a single singular

point, a twofold specialized quadric has a line of singular points,

and so on.

Any S'
r which is determined by the X'

r _j of singular points and

another point /' on
(f>

lies entirely on
(/>.

This follows from the fact

that all points of the ,S'
;

'

lie on some line through /' and a singular

point, and, as we have seen, these lines lie entirely on <. In par-

ticular, if r = 2, the quadric consists of planes through a singular

line ; if r = >, the quadric consists of spaces of three dimensions

through a singular plane: and so forth.

A group of n +~[ points which are two by two conjugate with

respect to c form a self-conjugate (
// +1 )-gon. There always exist

such
(

// -f-1 )-gons if the quadric, is nonspeciali/ed. This may be

seen by extending the procedure used in
Jj

1*2. By a change of

coordinates the it + 1 hyperplanes which are determined by each

set of /^-points in the (//-f-l)-gon may be used in place of the

original hyperplanes j\
= <X In the new coordinates any point

whose coordinates are of the form ./
i(

.

= l, .>,= () (i~---k) has the

hyperplane r
A

.
= for its polar. The equation of

<f)
then becomes

Now the vanishing of the discriminant and its minors denotes

geometric properties which are independent of the coordinates used.

Hence we infer that for the general quadrie all the coefficients
/-,

differ from y.ero. If the quadric is /--fold specialized, it may be

shown that equation (I*) may still be obtained, but that /' of

the coefficients vanish.

It the quadric is general, by another change of coordinates

equation (I*) may be put in the form
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EXERCISES

1. I'rove that all points of any >',' through the N'
,

of singular points
have the same polar hvperplane, whieh passes through >''.

,.
and that,

conversely, any hyperplane through the singular S'
r ,

lias for its pole

anv point ot a certain S'
r .

'2. Show that for any ipiadric which is r-fold speciali/ed. anv tangent
h\"pei-plane at an ordinary point is tangent to the ipiadric at all points
of an

>','. lying on < and determined by the point of contact and the

singular >','. _ ,.

3. Show that if
<$>

is more than once specialized, any hvperplane is a

tangent hvperplane at one or more of the points of the singular >','. ,.

4. Prove that every
>',' through a point //.intersects < in an >';' ,

and

intersects the polar hvperplane of ?/ in an
>',' _ 1?

which is the polar hvper-

]ilane of
;/,

with respect to the ^',,^_ }
in the space S'

>n .

5. Prove that if
>','

and V _ r \
are conjugate polar spaces, the tangent

hvperplaiies to < at points ot the intersections of < with one of these

are exactly the tangent hvperplanes of < which pass through the other.

6. Trove that any plane through the vertex of a hvpereone inter-

sects it in general in two straight lines, but that if /; ~^ '<\ it mav lie

cut irely on the hvpereone.

166. Intersection of a quadric by hyperplanes. Let
(f>

be a (piadric

hvpersurface in ;;-space with the equation

2"'*"'v*=- K,-= ff*) d >

It is intersected bv any hyperplane // in a (piadric hypersurfaco <f>'

lvin<4 in //. To prove this we have simply to note that the equation

of // may be taken as >'.]=" without changing the form of (1 ).

\Ve proceed to determine the conditions under which
(/>'

is spe-

cialized. If
(}>'

has a singular point /', any line in // through /'

intersects $>' , and therefore
(/>,

in two coincident points in /'. There-

fore, either // is tangent to < at /', or /' is a singular point of
(/>.

( '(inversely, if // is tangent to at a point /'. or it // passes through
a singular point /' of

(f),
then

<$>'
has a singular point at /'.

If
(/>

is a noiispeciali/.ed (piadric. the hyperplane // has at most

one point i if tangvncv. I Iciice :

7. .1
ii'inxfii'i'liiUzi'il ijiiiiil

ri<' is iiiti'i'xi'i'tt'il f>'/ "/>// //"///'///////// //////-

jiliiii'
in <(

ii'iiixjii
'i-nili'i '/ nlttliJrii' "/ "//*' 1'iii'iT </t /ili'timutl, till'! /#

intiTX'-ffi-il l>i/ 'i (<///</> >/t
/////' //'I'l/ii

1

i/i 'i
inii-i'-x/n'i-inhzi'il tjuiii/rif

H'itJi it* siiti/iil'ir fi'tnt.
"f lln'

i>"int
<>t' til ii'!>'n<-ij.
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If the (ptadrie $ is once speciali/.ed, having a singular |i<>int A,

any hyperplane which is tangent to
</>

at a point />' distinct from ./

is also tangent to
c/>

at all points of the line A /'
(
Kx. _, l*i ">_).

Hence :

77. If t/ii'
<fi<<i</rft' (/>

/MX "til- xhi'/ii/i/r finhif .1, '///// hyperplitn? wlii<-h

tjufx nf pax* tfirmnjh A infi-rxt'i-fx
(p

in <i
nnnftpt'i-iii/izi-it ^iciilrli' <>f ,,/t,-

InH'tT (Unu'nxinii ; tint/ liyprrplrine throiujh A />ut n<>t t'ltt^i'nt <tt <nn/

dt/n'r point infi-rtH'rf* $ in <i nncc-speciuUzt'd y?w//vV, with n sini/ttl'ir

pnint nt A; <in<l <ni>f hyperplnn?- t<ni>i'tit <tln<i tin' liin 1 A/! int>'rxi''-f*

in a
ftrirc-sju'i'iii/izt'i/ <pi<~lri<!

in'f/i tin- line A /' * <( suii/idar //'/!>.

More generally, let $ he an r-tdM specialized quadric containing

a singular >','_,,
\yhieh \\'e shall call S. Any hyperplane meets S in

an S'
r ., or else completely contains S. Mnreoyt-r, if // is tangent to

<f)
at some point /' not in A', it is tangent at all points of the A'

determined hy /'and S, and therefore contains S. I-'roni these faets

\ye haye the following theorem:

777. If t/n 1

tji/riiln't' (f)
/x r-fniil ^^i-cin/i^n/, fmrhif/ n xinr/uldr

( )' 1 )-tl<tt X. untf hyperplane // nut cnntnitiini'f S hiti-n'<-tx
<f)

in <n>

(r \)-fi>hl npfvwUzcd i/u<n/r/'/'
it'h<>x<' in;fitJnr (r "l)-tltt ix th>'

inti'wrffnn <>f II ,tn<l S: nni/ hifprrplnni
1

<-")it<iinin<j Slut nf fii/i;/<'nt

t" (> infcrsi'rfx
(f)

in mi r-t'<>/</ ttpi'i'iftUzwl ijn</i/ri<'
//7/">v xim/ultir

(
r 1 )-fi<tt i* S; mill nni/ Itifpcrplftn

iin (r + 1 )-fl<l spccinlizcil ijumlrin u'

Lit I' (ti)-l S.

Consider, now, the intersection of
^> and the two hyperplanos

V,,,,.= (), 2v,-=o, (_>)

\\'liich \ye shall call // and 7/o respectively. // intersects in a

rjuadric c/>' lying in S
n p and //., intersects

</>'
in a (piadric 0". which

lies in the *>'_., formed hy the intersection of //, and //.,. Hence

the common intersection of the ipiadric ( 1 ) and the hvperplanes (
'_' )

is a tpiadric of /) :>> dimensions lyin^- in a space of // '1 dimensions.

'1 his ijuadric is also the intersection of the (piadric determined hy

(f)
and //

]

and that determined hy
c/>

and //.

This ipiadrie may also he ohtained as the intersection of (/> and

any t\yo hverlanes of the encil

V(// +\/.,)r =0,
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in which thnv ;uv in general two hyperplancs tangent to $ and

fixing two points of taii;j;ency on
<p. Hence we have the theorem:

IV. Tin- intfrxt't'tinn <>f <i
<]int'/ri<'

xnrt'ii<-i' <> /,// ,ui ,V' furinal />//

tii'n
hi/in'r}>l(iHt'x

1-nnxisfs In i/i'tii-ni/ >>t' uti .V"' , furinal lij
tin- intcr-

aa'fioii i>t t/r<> Jiiijn'ri'oin'x liftntf <>n
</>.

Thi'
>\',~'. t

Jinx flic
j>ri>j>t't'f//

t/nit 'i/i// ji"hit
i>n if >/ni// nt' jn'nii'il tn I'di-h lit' ttru fi.i'fit [mi/ifx nn (p

1'if *fr<ti<//it li/tt
1 * li/ini/ entire/// an

(f).

Of course the fixed points and the straight lines mentioned do

not in general belong to the X'"' ...

We shall examine this configuration more in detail for the ease

in which is not specialized, and shall assume the equation of
(f)

in the form ^ .,

2/r^ - (1>

Then the condition that a hvperplane of the pencil (o) is

tangent is ^ , .^ ,.^,

2"? + - ^^ "/', 4- X N f'j
= 0.

(
.

)

If the roots of equation (
">

) art 1 distinct, there arc two tangent

hyperplanes in the pencil (
> ). and we have t he general case d escn lied

in theorem I\. It the roots ot
(

.>
) are e([Ual, there is only one

tangent hvperplane. and the corresponding livporcoiie on
<f>

is not

snt'ticient to determine the s
',' 1

"_!
:i

, hut must he taken \\ith another

h\'pcrplane sect ion.

Finallv, equation (>) mav lie identically satisfied. This happens
when - -i

,
. ^ - .-, , ,y lt

- = o, V,, /, = o, v//- = o, ( i;
>*4 ' +-~i

' ' ,'

which express the facts that each of the hyperplanes // and //,

j^ivcii Kv ('(juations ( '_' > are tangent to 0. and that the point of

tan^encv of each lies on the other. Then anv one i>f the hvper-

plancs nt the pencil ( )
) is tangent to

(/>.
and the jioint ot taiM^ciicv

is "_ -4- \/ (

,.
so that the points ot taii'4'encv he on a straight line.

The pencil of hyperplanes ( '}
) consists, therefore, of the liyperplanes

taiiLTent to
(f)

at the points of a straight line on
(/).

Let us call this

line h. Then all points on the X; .,

determincil liv (/>. //,. and //.,

mav lie joined to ;mv point of It liv means of a straight line IviiiLj
1

on
(/).

Let ;i
. lie a point on X J

. Then anv point on the line joining

//
to a. point ot // is it + \A 4-^t//. The coJ'irdinates of this point

sat isfy ei piat ions ( '2 ) and ( I
) lv \ ill ne of (

(
'>

) and t he hypothesis
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that v/ satisfies these equations. Consequently in this case S
:i

2

, is

a speciali/ed qiiadric with // as a singular line.

('(insider, now, the intersection of
(/> by an .s'

;

'

, defined bv the

hyperplanes NV.,-:=0, V/, ,-:(), Vr./-^ 0. (7)

These detennine witli
c/>

an s
'

; ,"' 4
. which niav also be determined

as the intersection <if
</>,

and anv three linearlv independent hvper-

plaiics of the bundle delined by

Ainoncr these there are -f.

'

tangent hvperplanes. If the ei|uation

of
</>

is in the form
(

I ), the tangent hyperplanes are !_n\eii bv values

of X and ft, which satisfy the equation

and the points of tanp'iicy of these hyperplanes are then a
t

-

These points of tan^ciicy therefore form an
.s'j"

1

, or curve of second

order Ivin^ on
(/>,

and every point of the >s
',,"^ 4

which we are con-

sidering mav be joined to each point of this curve by a straight

line on
(f).

Filiation (
*

) is identically satisfied when each of the hyper-

planes (7) is tangent to
(/>

and the points of tan^eiicv of each lies

on the other two. Kadi hvperplane (X) is then a tangent hvper-

planc, and the points of tan^encv are <t
t

-\- X//_ -)- /JLI\. where X, // are

unrestricted. The bundle therefore consists of all hvperplanes
whose points of tan^vncv are the points ot a plane Ivin^ on

cf>.

Therefore each point ot the S
t
~_

'

4
is joined to each point of this

special plane bv lines Iving on
c/>

and on the S
t

~

4
. Therefore the

S
n

2

(
is in this case a specialized qiiadric with that plane as a

singular plane.

('onsider, now. the general ease ot the intersection of ^> b\- the

S'
ti

_ k
defined b\ the / hvperphuies

2".'-'-,
- (/- 1, I', ..-./') (10)

This is an
>',; / ,.

which mav also be obtained as the intersection

ot
c/>

and anv / hvju'l'planes ol the s\stem

in \\lneli there arc "vnerallv /" "'

taii"'ent hvperplanes.
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In fact, if we limit ourselves to a nonspecialized and take its

equation as (
t ). the condition that a hyperplane (11) should be

tangent is ^N
(

,,
;
i.+ Xl,^'+... + \< _,;'' r=rt, ( 12)

and the points of tangeiicy are then '/'/'-f- A,^-'-f 4- A,. ,'/'/'',

where, of course. A, satisfy (
1 '2 ). These points form, therefore, a

S.~
'

., on
(f>.

and anv hypereone with its vertex on this N^., passes

through the N'
J

, ,

which we are discussing. \Ve have, therefore,

t he theorem :

V. Tli' / /ifi'/'Xf'i'f t"it "t it
n<inxp>'<'tnhzc<1 fiiinilt'ii'

<$> f>i/ 'in S
{

. <l>'fi)ii <1

t>ii /" hin)<'ri>l<nit'n /* '/// ^,~\. , n'/m'Ji, in </i'//i'/-ii/, //i/x t/ir
i>r"jn'rti/ t/i/tf

,//// i>t' if ft

i><>nitx miiji In'
j"iiii-<l fn 1'Hi'li jKiint "fa wrhihi X'^.,

"
(f)

/// xtrniijltt Inn'* //////// n 0.

According to this tlieorem we have on
(ft
two spaces. ,V-_| ^._ l

and

,\
J

.,. such that each point of either is connected to each point of

the other bv straight lines on 0. It is obvious that the condition

must hold ~2 : /, - n 1.

If a --'-\. the t\\o spaces are ,v,
: and ,S',

J

', each of which con-

sists of a pair of points. It n = 4. the two spaces are
,s',

jl and

,s
'-

. one of which is a curve of second order and the other a pair

of points. If n -- ~). we have either an
.s'/' connected by straight

lines witli an N;'. or an
,s',

Jl connected in a similar manner with

another
.s',-'.

In the first and last of the examples just given we have two

spaces of the same number of dimensions occupying with respect

to each other the special relation described in the theorem. In

order that this should happeii.il is necessary that t> k 1 /- - :

+ 1

whence / = Hence it is onlv in spaces of odd dimensions

that two quadric spaces ot an equal numbei 1 of dimensions should

so lie on the quadric & that cadi point of one is connected with each

point of the other bv straight lines on c6. The number of dimen-

sions of these spaces is one less than half the number of dimensions

of the quadric.

Returning to equation ( 1 "J )
we see that it is identically satisfied

when the hvperplaiies (l (

i) are each tangent to <+> and the point

of taHLTellcV of each lies oil e;ich of the ot llel'S. TllCll the system (11)
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consists of hyperplanes tangent to
(/>

at the points of an N,' Kiti'j;

on
<f>.

The ,V'^ t ,

determined by and ( 1<>) is then a /--!'>]< 1 >pe-

eiali/ed (juadrie with the aforcincntioiicd N^' ,
as a singular locus.

167. Linear spaces on a quadric. It is a familiar fact that straight

lines lie on a quadrir in three dimensions. \\ e shall m-i ieralr/.e this

property by determining the linear sjiaees which lie on a qtiadrie

in dimensions. Let the quadric $>
lie j^iveii as in x 1'i'i, and let

S'
r
be a linear space detined by the n -f 1 equations

p.r t

.=
//',' +\i/'f'+ + \..'/~,'

'"
( 1 )

The necessary and sufficient condition that r, of (1 ) should lie

on (p for all yahies of \
(

.
is that

//,
should satisfy the / + ! equations

"
.., / + ] ) (-2)

,and the ecpiations

of \yhieh the first set express the fad that each point //,
is on $.

and the second set say that each point is in the tangent hyper-

plane to (^ at each of the other points.

Take any point /,'
on

<f>
and let

'/',
he the tangent liyperplane

at /p Then 7\ intersects
(f)

in a specialized qnadrie N^
1

,. Take /'.

any point on
.V,'^.,.

The line /,'/' tlien lies on ^ liy the conditions ( '1 )

and ( '} ) and on ,V
(

-'
.,. heeanse \" ., is speciali/eil. The hyperplane

7'., taii'jvnt to at I' is also tangent to
N,',

J

_\, and intersects the

latter in an >'";., \yhieh contains
/,'/.'. 7'., \\'ill also euntain other

points of .s'
;i

"

3
if '} "^ 1 : that is, // , 4. If t his eondit i< >n is met,

take /' in N^
1

,, hut not in
/,'/.'.

The three points /,'.
/.,'. /' determine

an N', which lies on
c/)

l>y \'irtne of equations ( 'J ) and <
;1 ).

The h\pe!'plane 7'., which is tangent to at /'.. is al>o tan-

gent to -V.. ;

and intersects it in an .V"'
4
which contains \.'. It will

contain other points of
N,,

J>

.,

if " 1- .,--: that is. // (i. If this

condition is met we may take another point. /,'.
on this N

(

hiii

not on .s'.!. The four jioints /', /'. /'. /, no\\- determine an N' \\hich

is on
<f)

hy the conditions ( il ) and (
'*> ).

This process may be continued a-. loii;_r as the condition fur the

yalne ot // found at each step is met. Suppose we have determined
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in this wav an S'
r _

, lying on
c/>

by means of r points, the tangent

hyperplanes at which have in common with
(f>

an N',^,. ,
contain-

ing \' r If w r 1 >/ !, that is, if r< , this ,V-\. t
has

points which arc not on
>>','_!

Take /',
,,
one such point. It deter-

mines with
>>','._!

an N
;

'

lying on
^>.

The process may be continued as

long as / < . but not longer. Since the dimensions of the quadrie (/>

are // 1, we shall write the condition for / as r~- - and state

the theorem :

/. ,1 ntnixix't'inlizfil t/undnt' fontum* linenr .vy/'v.v
<>f <nut number

nf (linu')ttii<>ni< ciiunl t <>r If** tlmn nn/f tin' >/ii/nf><'r nf dinii'itiiintix i>t

tin' iiuaJrii', t>ut I'nnttiniH n lint'rti' sfxict'
<>t r/r<'<ifi'r lUwi'nsions,

To find how many such linear spaces lie on the quadric, we notice

that the point 1[ may be determined in x" '

ways, the point /_!
in

x"~~ ways, and so on until finally the point /'
. ,

is determined

in x" '

ways. The r + 1 points nun" therefore be chosen in

x -
"

ways: but since in any S'
r

. / + ] points may be chosen in

x''"'
+ 1 ' ways, the total number of N' on the qnadric is x -

The number of .\'
which pass through a fixed point may be

determined by noticing that with
/,' Iixed, the / points /.',

. .
., /'

4l

may bi> determined in x "

ways, and that in any ,V'. the r

points may be chosen in -x'" ways, so that the number of different

,s'^ through a point is x." . \Ve sum up in the theorem:

H'Jiii'fi x "

JKIXX fh>'<>ni/Ji <i ni/ ti.i't'iJ jinint <>)i f/H' <t iini? n<'.

If >i is odd, the greatest value of / is . and there are

x 4
' '

linear spaces of these dimensions on the quadrie: it n is

///

even, tin- greatest value of r is . and there arc x ' Jl
l near

spaces of these dimensions on the quadric.

Let us consider more in detail the case in which // is odd. and

let us place //--'_'/' + 1 . \Ve shall limit ourselves to a non-

speciali/.ed (|iiadrie <f>
and shall write its equation in the form

>< ... / -.'-. ------ ,- = 4
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us mav be done without loss of
<_
reneralit v. The linear space of

the largest number ot dimensions on
(/>

is then N', and its equations

ma he written

where the coefficients satisfv the relations

In fact, any ,s'' is delineol hy /' + 1 linear e(|iiations connecting the

vuriuhlt'S i>/
;

ami ./ . and these (-([nations may he put in the form (
"> ),

provided no one of the variahles u
t

is inissiug from the equations.

But if one of these variables is missing, it is clear that the A'' cannot
/'

lie on (;">). The conditions (
>

) are found hy direct substitution

from (
.

) in (
4 ).

As a consequence of equations ((>), the determinant <t
ik

==-!,*

and \\c ma\" divide the S\ into t\\'o lainilies, according to the value

of this determinant. Hence \ve have the theorem:

III. <>lt (I
nullfjui-iitll'ii'il ijlltlil

/'(/ <>t tliliU'HKlUHX -
/>

ill t(
xjittif

"/'

mill <U//H'/t#i<i>ix '2
j> + \ thfi'c iti'f {'<> Ju/iit/tt'X

i

if liiiiiir
njnti-fti

<>f

</t//ti tixtoiis
i>.

No\\- the ('((nations ol anv one ,s'

r

mi ( I ) mav he written Itv a

proper choice of coordinates without chan^in^ the form of (4), as

/,= .'> (/ = !, 2, ... //-(-I) ( 7 )

In fact. \ve have simpK" to make a change of coi'udinates h\

\\hidi the ri^ht-hand nienibers of equations (
."> ) are taken etpial to

j~'
(
and then t(> drop the primes.

( 'misider. t hen. t he intersect ion of ( 7 ) with anv N' wh< >se equations

are in the form (.')) wit h <i
tt

-- <, \\ here > - j 1 . Then (
;> ) is ot the

* Sri.ii'> "Tlirury i if 1 )f[c mi in;i ni-." p. l.'.T.
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same family as (7) when J = 1, and is of the opposite family when

(-:!. The coinlitioii for the intersection of the two S' is

(8)

If
[>

is odd, e(|uatioii (
<
s

) is satislied* alwavs when *= 1, but

is not satisfied when c = 1 unless other relations than (
ti

) exist

between the coellicieiits. If p is even, equation (
<
s

) is ulwavs satis-

lied when = 1, hut is not satislied in general when > 1. Hence

\\'e have the theorem :

IV. If i1 /* ''/' '"/'/ nn)iJn j

r, tiro liitt'iir
x[i<-<'x

,V' of
t>j>]>oxi'te fawHics

nn it
tjHtitli'it'

tn <i
xjHii'i'

of' '2
j> +1 diinenxioHx iiht'itifx inti'rui'ct^ <i/nt

tifn ,S'' "f tin- Kit/ni' J it mil i/ </" li"t //i </i'/tt'/'<il intc/'xi'ct, if I
1 '"< <"' <''''"

ini/iJ'i i\ t n'n ,S' ,,(' tin 1

xii/iti
1

fitinilit (tlu'difx uiti'/'xi'i'f, /nl tu'u .S'' af

iijijinxt/i' Jitiniln'8 il" ii"t in i/i HI fid tnti'rxi'i-t.

It is easily shown that anv point /,'
on

(/)
mav lie ^i\'en the coor-

dinates ^-= 0, r-= 0, (i- \, '2, -,/>), ti
.

j

: ./
_ ,

1 : 1 without

chan^in^ the form of the equation (4). The tangent hypeiplane 7^

at I[ is then ti
fi M ./-

y
, ,, 0, and its intersection with $ is the

>S'^'_j

Anv point /! on this locus mav he '^iveii the coiirdinates u
t

= '),

./

-

0, ( /==!, J, ...//- 1 ), /
/(

: i/
/i + 1

:.r
/(
:.r

I) + 1
= l:l:l:l. The line

/;/.' is then on $. The tangent hyperplane to
(/)

at
/._'

is then

,. i

: " iind intersects '

s
>',",

l

_ 1
in the v

v~",

1

_.,

Anv jiomt /' on this locus can now lie n'lven the coi'irdinates ?/,= ",

./ i). (/- 1. -2, -./'-^), w,. .,:
/
J(

: //
; , .,:.r, ,:./;./;. ,^ 1 : 1 : 1 : 1 : 1 : 1 ,

and the N' determined h\- the three points /'. /.!. /.' lies on
(/>

and

has the equations //.= // : ./ :...._;./ : I), // , j~ ,,'
-

'
-

'
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Proceeding in this \v;iy we may sho\v that unv
,\' ( /,' y) 1\

on $ c;iu IK- n'ivri! the equations

without cliaii^in^ tin- I'nnn of equation (
1 ).

Anv .V' on
<p has, as we have sri'ii, the equations (>), and if it

also contains all points of
('')<

its equations reduce 1 to the form

(10)

where the coet'iicieiits satisfy conditions similar to (
ii

) and

",.
' ' '

",.,. t

W=S
| </."'// ',

=l ''

\Vithout change of the form of equation (
I ) or (

l>
) anv one of

these ,S'' can be ^'iveii the etjinttions

",
:

-',- (
1 - )

In fact, we have simplv to make a change of variables bv which

the riidit-hand members of equations (
1<) ) become ./

'

and then to

drop the primes.

The X' !_M\en by ( 1 '_'
) will intersect any .s'' '4'i\cn b\'

(
1 U ) al\\ a\ s

in the points of ,s'
;

'

^i\cn by (

(

.l). In order that ( 1 '2 ) and ( I<h

should intersect in some other point not in N
;
'., it is m-eessai'v and

sut'ticieiit that
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Now if
i'

k is an odd number, equation (1-V) is always satis-

tied when . 1 : aiul it' p 1: is an even number, it is always satistied

when c - 1. Further, we notice that if (\'l) and ^lU) have in

common a point /' wliich is outside of N[, thev have in common
the N^. i

determined by >'{.
and /': and since (1-) and (10) are on

(/>,

this N^j is (jn
(/>.

.Moreover.
[>

k is odd if p is odd and k even

or if
//

is even and k odd, and
//

k is even if both p and k are

udd or if both
j>

and k are even.

From this we have the following results:

1. If
[i

is odd and two .s'' of the same familv intersect in an S'
k

where k is even, they intersect in at least an
>',[..,.

If
//

is odd and two N' of opposite families intersect in an S'
k

where / is odd, they intersect in at least an X,' ,.

3. It
/'

is even and two N' of the same familv intersect in an .s
1

,'

where k is odd. thev intersect in at least an -^[., r

4. \i
ji

is even and two .s
1 '

of opposite families intersect in an .s'
x

'

where /.' is even, they intersect in at least an N,' , ,.

This mav be put into the following theorem, with reference also

to theorem IV:

V. If l'
/' '"A/, t"'" N'

; "f tin' mi in I'fiiinHii if" ii"f i/l i/i-/ti'/;il t'/tti't'-

ni'i-f, lut imii/ iiit,'i-Ki-i-t in <in
X[.

irlt, /-I- /,' /N "</,/; and (/''
,S'^ nf f>j>jix/ti'

filniilifS t/tt'-rvfi-t in i/'-ih fil in a
fi'nnt.

fmt
///</// infet'St'ct In an S'

k
trh, />

/.- /.> I'i'i-it. If I'
'* <'''>'". fir,, S[ i

,f tin' X'tuii' f<i mi! ij inft'/'tn'<-t in iji'in i'<i!

in a
x!/t;/?i' ji'i'mt.

Init nl'i/l tnt' /'Xi'i't tn <in .^' whrfi' k i* t'l'i'/l ; anil tim

S' '//
<.>[i]nii<ltt'

tmnilti'X d'.i ii"t in i/>n> /'<(/ tntiTxi'i-t, but until tnf> I'^f't in

an S'
t

.
n'hi-rc k i* <ld.

If in eijuatit'iis (l (

i) \\f take k p \, thev reduce, to

with
'',,
= ~

_L 1 . Hence we have the theorem:

VI. 7'// />/;/// mi i/ N'
, on

(f) // t//'" S', "/I,- "f t'lt/'li famUif.

Mme geiierallv the number nf independent cdetlicicitts in ( 1" ) is

known tVniii the thenrv nf determinants tn be - '

I lellre \\'r ha\'e the t liei d'elll :

VII. T///'"/i>/lt -///// .s',' -//( c/)//" /:
' '
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EXERCISES

1. Show that if
>','.

lies on
</>

it must lit- in its reciprocal polar space.

From that deduce the condition /
f>

r '
,

2. Prove that there arc X -
'

"'>',' <iii < by determining the

number of solutions of equations (
L* ) and (M), remembering that each oi

the / -+- 1 points may be taken arbit rarily on *'
r .

3. Show t hat through every >','.
Iv ing on

c^>
t here pass -s.

- S'
r

which lie on the qiiadric ( /,- < /
=

4> j-

168. Stereographic projection of a quadric in S
n upon S,', t

. Let
c/>

be a quadric hvpersnrlace of dimensions n 1 in N , X anv hvper-

plane in ,s'
(

, so that X is an N'
,.
and O anv point on

(/).
Strain-lit

lines tlirou'j,'li
<> intersect < and !i in general in one point each,

and set up, therefore, a point correspondence ot
(/>

and ^. winch

in general is one-to-one. There are. however, on both < and 1

exceptional points. On c the point <> is exceptional, since lines

through i) and no other point of c> lie in the tangent Ii\perj)lane

at <
>, the intersection of which, with !, is an N' ., \\hich we shall

call TT. lieiice (> corresponds to anv ]>oint of rr. ( )n i the points

in which the straight lines on
(/> tln'oii^'h O intersect ^1 are excep-

tional, since each of these points corresponds to an entire straight

line on c/x These straight lines are the intersections of <>
(>'',"',')

and the tangent livperplane ( .V'
._,) at <>. and therefore intersect

^ (*>','_,) in an A'.';\, which we shall call LI. Kvidently 11 lies in TT.

These statements, which are geometrically e\ ident, ma\ be \ rrilied

bv the use ol coordinates. Let ./ :./',::./',,., he coordinates ot a

point in \. and let
,?+.,*+ . . . 4.^=0 ( 1 )

be the c(|iiation of 0. \\'ithont loss of o-eneralitv we mav take ''

p.\\
ii + X.r

r

p.\ ,
0+X.'

p \ I -f \.l' ,

fj.\ }

-\ f \./
.
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and (>/' meets i in the point (
t >, obtained l>v placing A"

)(

=0 in ('2).

This determines \, and the coordinates of (
t

> are found to he

where arc coordinates of points in !, and ./. are coordinates of

points on
</>.

Since
./_

satisfy equation (1 ) \ve may write the

relation between /' and its projection <J in the form

pc>n
-' .,>=,-+ ; + + f; ,-

Kijiiiitions (
>

) sliow that to a definite point /' corresponds a

definite point <
t
>. except that the point <> ^ives an indeterminate (J

on the locus ^ 0. which is, therefore, the equation of TT in .

Also any point (
t

> corresponds to a definite point /', except that

any point in the locus 0,
~ +

.;
4- -f f,';'. ,

= (l i;'i\'es an inde-

tenninate point /'. but such that /' and n lie on a straight line

tliroii^'h
< >. Therefore

L =", ff+IJ+---+f;.,= o (4)

arc the equations which define the qiiadric 1. \Ve may note that

any point ','
which is on TT but not on LI LM\CS the definite point

< >.

Any >',.' \vliich lies on
(f> pi-ojeets into an

>','
on X. For the

An >';'
on (f> intersects t he tangent hyperphun

1 at o in an .\' ,

whieli

pi-ojects into an S'
]

in i. I>ut all points of the tangent hvper-

plaiie project into points on 11. and therefore this N
;

'

,

lies entirely

i in 2. Therefore we say :

7. /!>/
xfi-i'f";li'itpJiif /'/';/''//'-// tiiuj

1 nii'it r >y/'V ,S'
;
! //////'/ "// ii

ift/'iJ-

//', Jll/n> ,*!' /'t </<!
(f)

III 'I
KI'I!''!'

"I II lllllli IIX/"/IX I ft f>r<>U'//lt Illt'i i':>/'/','-

viiuiiili'ifi' n'/tli <t hiii'ir ftinii-i- S'
t ]

li/m<i "it it utitti/t'ti' anrtiti-i' LI in

'/ >//./</ til il '_' ll i illi'llfiollK.

'\'\\\^ beiii'^ jii'oyeil. let us coilsidel 1 the case ill which // is an odd

n umber '2
/'

-*-
1 . Then $ j> of dimensions '2

/>.
and LI is of rlimensions
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2
j>

'2. ( )n there exist linear spaces A'
;

' which project into linear

spaces ot the same niiinlier of dimensions, which we call i.'
(

since

thev are in ^i. An\' two ^L' intersect in at least a point, since thev

lie in a space of'l!/> dimensions (^1o'4). If that point of inter-

section is not on 12, it corresponds to an intersection of the two A'
;

'

on

0, since outside of 12 anv point of X corresponds to a definite point

of 0. If, however, the intersection of two X' lies on 12, the two

corresponding A' on do not in general intersect. In fact, the in-

tersection of two ^
'

on 12 simplv means that a straight line from

<> in the tangent hvperplane at <> meets each of the two correspond-

ing A''. Since we are talking of two A' in general, their intersection

in the tangent hvperplane at <> mav he considered as exceptional,

si i that we have the the< >ivm :

II. /> 1 H'o A'' nil tin'
tjU<lil/'H'

(ntt>.rni'i-t. (In'
rnf/'fHjiHHiftitt/

A'
}

on

tin
ijiiitilrii

1 12 </o not in i/f/n-ntl intf/wct ; and //' tiro A' on do not

tiitt'i'Xfi't, tint/'
f(i/'/'rnj>t>ndiHi/ A''_

1

on 12 in
iji'iit'i'itl

tntf/'Xfft in ti
j/ot/tt.

In a similar manner the question of the intersections of linear

spaces A'
,

on an A'.,'

1

].

1

., may he reduced to the question of the inter-

section of t \\ o A'
., on an A,-

1 and eventually to the intersection
/ - - /

- 4'

of two Aj on an A.,-
1

: that is, of two straight lines on a quadric sur-

face in ordinarv three space.

We mav, accordingly, divide the A' on into two families, accord-

ing as thev correspond l>v this successive projection to the two

families of generators on an ordinary quadric surface. From

theorem II. however, it is evident that we have the same classi-

fication as that made algehraically in vj lt>7: for it follows that

two A' of the same familv do or do not intersect according as
/<

is

even or odd, and two A' of opposite families do or do not intersect
/ i i

according as
/<

is odd or even. Exceptions mav, of course, occur,

as has 1 iceli shown in vj 1 'i
i .

Let us consider now the intersection of l>\ anv hvperphuie

uhidi passes or docs not pass through the center of projection i >.

according as A/ 4 ,/
,

is or is m>t o. The intersection \\ith (/> is

an A'- \\liich projects upon ^ into ;i i. ;

'

,, \\ith the eijiiation

(
"' l

'',:' ( S ,"
~H ' ' ' ^

S , ;

* '- ''
\%\<* n

- -
'',. iS i?..

( ''-/ ' I
. )

(l
.
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This is in general ii,,"!., \\hich contains 12, but if /</
;i
+ <f

n ^ = 0,

it splits up into tlir hyperplane TT and a general hyperplaiie 7.

1 leiice tlit
1 theorem :

If nn N 1

,"

1

* "/'"" $ '^"'s' " f
/"'-

s'-s
'

thrntit/h < >, it /</*;/<
-tx info a <pnlri<'

in ^i H'/tii-h "iititin* 11 : //' itn N 1

^., "" < <l<x's pass thruiinh < >, it projects

info ,( hyperplane in ~ together icit/t tin 1

hj/jK'rjila/tt' TT.

EXERCISES

1. Slio\v that any >';',
on

<$>
not passing through <> projects into a 2^

in 2 which intersects TT in a 2;;,. ,
contained in 12.

2. Show that anv
>',', ,

not passing through <> intersci-ts
</>

in an -s
',;-

\vhich in'oiects into a 2;' .. which passt-s / times throiiu'li 12.
i j 7i _ i ri

169. Application to line geometry. Sim-o lint' c-oiirdinatt'S con-

sist of six homogeneous variables connected bv a (juadratic rela-

tion, a straight line in ordinary space niav be considered as a point

on a qnadrie surface in an .V.. \\'t- shall procrcil to interpret in line

'^eonietrv some of the general results \ve have obtained. In so

ddiii'j,' \ve shall, to avoid confusion, designate a point, line, and plane

in N- by the symbols \',
.s'[.

.s'.', respectively, reserving the words

"point,"
'

line," and plane" for the proper configurations in
-V,.

Let $> be the (jiiadric whose equation is the fundamental relation

connecting the coordinates of a straight line. Then an N' on is a

straight line, an S' on is a pencil of straight lines, and an A'' on <

is either a bundle of lines or a plane of lines. These statements art-

established bv comparing the analytical conditions for pencils and

bundles of lines given in ij 1ol with those for S'
}
and N.'. on

(f).

The two families ot .s'.! on are easily distinguished, the one

consisting of lines through a point, the other of lines in a plane.

It is evident that t\\o ,s'.' of the same family intersect in an >>'.', for

two bundles of lines or two planes of lines have always one line in

common. ( )n the other hand, a bundle of lines and a plane of

lines do not in general have a line in common: that is. two ,s'' ot

different families do not in general intersect. If. however, a point

ot lines and a plane of line-; have one line in common, they \\ill

have a pencil in common : that is. it' fir,, .s'.' nf ://t}\ rr/if fiimilit'S

"/i (> !nt> i\t> <-t in iin N'. tin >i i///' /> </ in ii/i
N,'.

'I his is in accord

\\ ith theorem \'. ^ 1 1 17.
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A linear line complex is an >S'
a

-' formed by the intersection of
c/>

and an S'
4

. If the Nj is tangent to $, the complex is special and con-

sists of x'.s'l joining the points of the complex to a iixed A','. The

special linear complex in line geometry consists, therefore, of f.~

pencils of lines containing a fixed line.

A linear line congruence consists of an .S'.V"' formed by the inter-

section of
(/>

and two N|. Therefore it consists in general of lines

each of which belongs to two pencils containing, respectively, one of

two fixed lines. When the two Iixed lines intersect, the congru-

ence splits up into a bundle of lines and a plane of lines, with a

pencil in common. That suggests the theorem that on
</>,

//' the

tii'u fixed Ay connected icith a cont/ruence >S?r
J lie on an

*S'[ of 0, the

A*'.'"' sjilitti itj>
into ttco .s'o <>f different families intensectin;/ in (hi*

N,'.

A linear series is an
,s'i'

J) determined by the intersection of
(f>

and

three
>S'^.

From the general theory we see that the series consists

of ji
l

lines, each of which lies in a pencil containing each of x 1

fixed lines. It therefore consists in general of x 1

lines intersecting

another cc
1
lines. \Ve leave to the student the task of considering

the special cases of a line series.

A linear complex

a r>\ + a.,j\, + + <t
n + !

.r
, + !
= (1 )

is fully determined by the ratios a
l

: a.2 : : a
lli. l , which may be

taken as the coordinates of the complex, and we may have a

geometry in which the line complex is the element.

The quantities a^ : a., : : a
n M are also the coordinates of a point

in N-, which is the pole of the hyperplane (1). Therefore the

point <i
f
is not on the quadric (/)

unless the complex is special. An
,S'' in ,S'. is therefore a line complex. The lines of the complex <i

(

correspond to the points in which the polar (1) of the point a
{

intersects
(f).

If
,S^

is on
(/>,

the complex is special and mav be

replaced by its axis so as not to contradict the previous statement

that an ,S'' on is a straight line. In fact, if the equation of
(/>

is

taken as ^.'7
= 0, the coordinates of a special complex and oi its

axis are the same.

( 'onsider now two complexes tt
:

and !>
t

as two points N' in N
p

.

They are said to be in inr<i]uti<>n if each X' lies on tin 1

polar plane ot

the other. From this it follows at once that if one of the complexes
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is special, its axis is a line of the other; so that if both are special,

their axes intersect, and conversely. In case neither complex is

special, the >',' defined by a, and l\ are not lines in .V
t
, and we must

look for other geometric properties of complexes in involution.

In N, the coordinates </,
and A. have a dnalistic significance. On

the one hand, they are coordinates of two
,s',' ; on the other hand,

thev are coordinates of two hyperplanes, the polars of these points.

The two N' determine a pencil of
.S'^

which lie in an Np and the two

hyperplanes a pencil of hyperplanes which have an /\ in common.

The pencil of N' contains two
.s'^

on $, and the pencil of hyperplanes
contains two hyperplanes tangent to $. It is then evident that

ftt'" cowph'ft'S (ire in involution tchcn t/ie ttco S'
t

in <S'
6
which /vy//v.s>-/^

than arc harmonic conjugates with respect to the qnmlrlc <, or, what

is the same thing, when the two hyperplanes defining the com-

plexes are harmonic conjugates to the two tangent hyperplanes to

which arc contained in the pencil defined bv the two complexes.
It is clear that in any pencil of complexes the relation between

a complex and its involutory complex is one-to-one.

If we consider a fixed complex </_,
all complexes in involution to

it are represented by points in an N
4

, which is the polar hyperplane
of <r with respect to

(f).

This relation can be generalized. Let N/. be a linear space of

points in .s'., and let >^_ t
. be the conjugate polar space with respect

to $, so that any point in .s
1

^.
is the harmonic conjugate with respect

to of any point in ,S
4 _ t

. We have, then, two scries of complexes,

each of which is in involution with each one of the other scries.

The points in which
N[. intersect

(f>
are special complexes. Their

axes, therefore, must lie in each of the complexes in X
4'_|.,

as has

been shown above. In other words, the </.rr.v <>f th>-
xjH'i-iil t'umjtlejri'ts

nt ant- xt'/'ifx ii/'i' t/n' xtmii/ht liiii-x fiini ui'in ><> the
I'oiiipli'Xt'H

of ttie

int'vlutrij .sc/'/cx, (i/dl i-ij/n'i'fyt'li/. I he prool ot the converse is left

to the Student.

For example, consider the pencil of complexes <i
t
+ \?>

t

in invo-

lution with the series of complexes ^ -f- \'</
i
-\- /zV (

.+ v
1\. The pencil

of complexes have in general a congruence of straight lines in

common, and these tire the axes of the special complexes of the

series. On the other hand, the series of complexes have in general

two lines in common which are the a\cs of the special complexes
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of the pencil. Again, consider the bundles of complexes <i
t
+ \f>

:

-f^
and f, -t-XY,-)- ////, in involution. The complexes of cither bundle

have in common the x 1

straight lines of a regains which arc the

axes of the special complexes of the other bundle.

Any eollineation of .V is a transformation of X, by which a

linear line complex goes into a linear line complex, and any linear

series of complexes goes into another such scries. If, in addition,

the quadric $ is transformed into itself, straight lines in X, are

transformed into straight lines, and any X! on $ is transformed

into another X.' on
(f>.

But as there are two systems of X' on $,

the transformation may transform an X.[ either into one of the same

system or into one of the other system. In the lirst case, points

in Xj are transformed into points; in the second case, points in X
s

are transformed into planes. We have, accordingly, the theorem :

A 'ollini'ittion in X irJii'-h !<><im< tJn' ^miilri' c/>
unxlfcrfif /x rit/nr

a cvllineation <.>r n correlation in
X',.

EXERCISES

1. Discuss oriented circles in a plane as points on a quadric in >'
4

.

2. Discuss oriented spheres in ordinary space as points on a ijuadrie

in X.,.

170. Metrical space of n dimensions. We have been considering

spaces in which a point is defined by the ratios of homogeneous
variables. We mav. however, consider equally well a space in

which the point is defined directlv bv n coordinates , ?/,, ?/ ,
I . I 2

and where the equations are not homogeneous. All equations mav
be made homogeneous, however, bv placing

The discussion is then reduced to the homogeneous ease, but

the use of t as the n + 1 *(" coordinate emphasizes the unique char-

acter of that coordinate. In fact, when /--<), sonic or all of the

original coordinates become inlinite. This enables us to handle

infinite values of the original coordinates. Such sets of \alues

mav be distinguished from each other bv the ratios of ./ . so that

</:</::</ :
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is said to define a definite point at infinity. \Vc liave, therefore,

a speeial ease of protective space with a unique hyperplane f = ".

\Ve mav define a distance in a manner analogous to that used

in three dimensions, by the equation

'/"' =
( "i

-
", ) 4- ( .!

-
a., )

'

4- 4- ( u'
n
- " )%

or, in homoeneous form,

From this it appears that the distance between two points can be

infinite only if f or (' is zero. Conversely, with the exception noted

below, a point for which f is at an infinite distance from any

point for which t' 0. Therefore t = () is called tJn- hyperplane <if

hi ti nit if.

On the hyperplane at infinity the coordinates are projective

coordinates in N defined by the ratios .r :./:: ./ .

i -j 11

An exception to the statement that points mi the hyperplanc at

infinity are at an infinite distance from points not on that hyper-

plane occurs for points on the locus

t = 0, j-f + '; + 4- f- = 0, (
4 )

since the distance of any point on this locus from any other point

is indeterminate. This locus, which is an N" .,, or a quadric hyper-

surface in the hyperplane at infinity, is called t/f ///>'</>//..

The following properties of metrical space are such obvious

generalizations ol those of three-dimensional space that a mere

statement of them is sufficient.

A ~hypiT*p1u're is the locus of points equidistant from a fixed

point. Its equation is

(
./', ", )'

:

4- ( ' "., )

:

4- 4 -
'.

./,'

- " f = r, (
">

)

and it is obvious that all liyperspheres contain the absolute, but

no other point at infinity.

A straight line may be defined hv the cijuatioiis

./
- 'i

' "'
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the ratios (if tlu 1

quantities /. We say that these <|iiantit ics deter-

niiiit' the direction df the line, direction bein^ that property which

(list in^uishes between straight lines through the same [mint.

Two lines with the same direction meet the hyperplane at

infinity in the same point and are called parallel. Two lines with

directions
/,

and /' meet the hvpcrplane at inlinitv in two points

with coi'irdinates l
i

and /', and the straight line connecting these

two points nit'ets the absolute in two points >uch that the cross

rat io of the four points is

Vi + 7/l+ -H/'

\ ( /f + /;++ /,-;
) \ l[- + I',' + + I':

We shall detinc this as the cosine of the an^le between the two

lines: namel, '

In particular two lines are jterpcndicnlar \\hen

/,/i+/a
/
s'+ ... +/,/,;-".

A line meets the absolute when, and only when,

/?+/.;+ -f /,;=<).

In that case the distance between anv two points on the line is

zero, and the line is a minimum line. Through anv point of space

L,
r o. then. -s_"

' minimum lines forming a hypereone of ~s.
n ~ l

points.

A tangent hyperplane to a hvperspliero intersects it in x"^ !

lines.

and since the sphere contains the absolute these are minimum lines.

Anv hyperplane

h 4- ".' = <\

\\iiii-h is a hvperplane in the .s'
. delineil b\- / -

-

<>. It is tangent

to t lie absolute \\ hen N
,^-
= n.

I I \ pci'plancs sat isfviiiLT t his condition arc minimum hypcrplanes ;

all othei's arc ordinary hvperplanes.

Tlie intersection of an ofdinarv hyperplane with t has a pole

witli rcsjiect t(.) the al.isolute whose coi'irdinates are -',:-' ::''..
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and any straight line \villi the direction d
:

: a.2
: : <i

n
is said to l>o

perpendicular to tin- hvperplane. In fact, from tlic definition of

perpendicular lines already given, this line is perpendicular to any

line in the hvperplane, and conversely.

Two hvperplanes are perpendicular when the pole ot the trace

at intinitv of either contains the pole ot the trace ot the other.

Therefore the condition for two perpendicular hvperplanes is

/,-!_/, 4- ... + 1' 0.
1 1

'

8 3
' " "

It follows that the n hvperplanes

./-,= 0, ./-.,= <>,..., .,- =

are mutually perpendicular hvperplanes intersecting at (>. Through
<> or anv point of space pass an intinite number of such mutually

orthogonal hvperplanes: for. as seen in 1<>~>, we niav lind in t = <l

an intinite number of coordinate svstems such that the absolute

retains the form "N
j-f
~

0, and the lines drawn from n to the points

./ 0, j-
k (Jc

'+- i) determine the hvperplanes required.

In this way anv ordinary hvperplane niav be made the plane

j-
n
= 0. The coordinates in this hvperplane are

./-,
: ./., : :

./;. ,

: /,

and its absolute is t Q, ./y + ./. :-(- +./-;_ 1

= 0.

Tlieret'ore f/ir <i<'<>nii't r;i in ituij <//<////<//// liifpcrplitm
1

<l!lY<'i'x fi'mii

tJiitt in f/n' unijiind xjnii-1' <>nlij In tin' niniJit r
'_//'

tin' (liiiit'nxinnx.

Two linear spaces, S'
r
and S'

r , are said to be completely />r/tUt/

if they intei'sect only at intinitv and if the section of N.' at intiniiy

is completely contained in the section of S'
r at intinitv ('*. >*.,}

Since the section of V at intinilv is an ,s
- '

_,. it is necessarv that

N,! and
.s','

should lie in an
>>',' ,_,. _,,._,, N,'. ,, (theorem I\'.

^j 1>1).

Morenver. if we take
/^ points in the

,S',! _, at intinitv, one other

point not at intinitv in S'
y , and /, / -4-1 points not at inlinitv in

S'
r , we have r+ - oints to iletermine an .s''. . Therefore.

Consider now two spaces. .N'' and S'
r ( / ":/.). \\hicli do not in-

tersect (/'
|

+/., a). Tlicv determine in the hvperplane at intinitv

two noiunt erscrt in 1

.;' spaces. V
]

and .s'.' ,. If we take / points in

s
',' _,.

and /., points in S'
r ,.

we detennine, bv means ot these points,

an N'
, in the hvperplane at inlinit\" which contains both S'

.- . i i i '
,

i
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and .S'' Iv means of this ,S'' . and one other point in ,N' not
'

>
' '

i ;
'

i

at infinity, we detonnino an .V'
.
which contains ,s'' because itIS '

1

contains ^4-1 of its points, and is parallel to ,s'' since the inter-

section with intinitv of N' is completely contained in that of N' .

'': i i

Hence,

i'<'fin</ li/ifur ximi-fx >r/fli r ~ r
,

it
^

is pt>ttftif>/f t iniss tt litii'ti/' ,</""''' N' thi'nniih S' iixrdllt'l t<> S' .

i

r

': i

J i

It is obviously possible to define as partially parallel two linear

spaces which intersect at infinity and nowhere else. This would

lead to a series of theorems of which those in ^ 1->X are examples,

but we shall not pursue this line of investigation.

Two linear spaces will be defined as completely perpendicular

when each straight line in one is perpendicular to each straight

line of the other. If S'
r
and ,V' are two linear spaces intersecting

the hyperplane at infinity in /\'._i uid
A','. . r respectively, it follows

that the necessary and sufficient condition that .V'. should be com-
i

pletelv perpendicular to X' is that S'.
,

should lie in the conjugate

polar space of .S'
?

'

_ l
Avith respect to the absolute, when, of course,

.S'' _ T
will also lie in the conjugate ]>olar space of -s

','. ,

with respect

to the absolute.

Now the conjugate polar space of S'
r

in .V'
, (the hyperplane at

intinitv) is, by Jj 1<>5, S^_ r _,. If
,S','

is given, its intercejit on the

plane at infinity ,V'
,
is determined, and the reciprocal polar space

X'
r _, is also uniijuelv determined. ( )ne other point in finite

space then determines with this V
t
an ,V'

,.

which is completely

[KM-pendicular to the given N
'

. Hence the theorem.

T/l/'<>>ff//t III!!/ jiolllt ill
KfHll'l'

lit/I' (Onl Ilillll ntll' ,S
;

'

r
I'lIU fll'

jlllXXti)

K'/iii'/i /s
r/i)/ij>/t'tf/i/ ]if/'i>i'

n<l it'iiliir fa it i/ii'i'H S'
r

. Ani/ Inii'iti'
sjxii't'

i-'ii/tii i ih'il. iii S'
n r

is f //>// I'niii >>l>'til i/
in rin'tnl I'-iil'tr in /in// 1 1 n> 't r

sjiiiri'

in S'
r

.

It is possible to define as partially perpendicular, spaces each

ot which contains a straight line perpendicular to the other, as in

:? li)t!, but we shall not do this.

Let us consider the stereograph ic projection of a hvpersphere upon
a hyperplane. Mere we have merely to use the results of lo'S,

interpreting the ijuadric </>
as a hypersphere, and the plane .r

n r ^
()
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as tlic liyperplane at intiiiity in N
(1

. Then TT is the liyperplane at

infinity in N, ,,
and 11 j s t) u absolute. We have at once the theorem :

/>'// the xtereni/fiipJnc projection nf it nintersphere in S
n upon <i

hilperpbnie .\ ,, hyperphtnnr xf<'tinx <>t (> </ into hifperplnnen <>r

Jiiipi-rxpJti'rt'x
lit' S

n , iii'i'urtlhif/ iix tin' hifperplanar xi'rfinHx f (j)
>1<> or

/" nut 1'untiiin tin' fi'/ifi-r nf rnt't'twn.

A collineation in S
n
bv which

(f>
is invariant skives a point trans-

formation on
(f)

bv wliich hyperplanar sections
L;

-O into liyperplanes.

There is a corresponding transformation in ti
a _ }

l>v which a hvper-

jilane or a hypersphere s^'oes into either a liyperplane or a hvpersphere.
It the collineation in S

n
leaves (> as well as invariant, hvper-

planes of N
M ,

are transformed into liyperplanes, and the transfor-

mation is a collineation. lint the transformation in <S'
(J
leaves the

tangent liyperplane at o unchanged, and therefore the correspond-

ing transformation in \_, leaves the absolute unchanged. Heiu-e,

(_

1

<>?/hn'tit(ttnst in S
ti

tr/i/'r/i 1,'iin-
(f)

it/I*/ ///I-
[H'int O <>n

(f) unt'hanfied

il> ti-rniiin
: rnlli iii'iitmiix in ,V

( ]

H'JiicJi It'iiri' the itlasolutc unt'hfinffed find

u'hii'h ni'i' tliert'fnre nit'triml tnuixfurmntinnx.

( 'nllini'<itin))x in S
n

icJttfJi /I'ld-i-
(f)

fiiif not i) unchanged <1*'termine

l>iitt trnnxfortnutii'tnn in S
:i , /<//

u'hic/t lii/perxpherex <i into Junter-

ftpJierex,
it

Jiifpei'plnne ln'in</ ermxiilered it
ftper'mt

i-iixf <>f n
InfperspJu're.

\Ve have used in ^ 1f'S one set of coin-din at es (.r
t

) foi' the points

of
</).

and another set ( ^, ) for the points of ,s'
;i r but clearly the

coi'irdi nates ./. mav also be used to determine points in S
n ,.

\\"e shall have, then, for the points of ,S'
; ,>/ + 1 lioinogenoous

coi'n'dinates connected bv a quadratic relation, and such that a

linear equation between them represents a hvpersphere with the

hvperplanc as a special case. Kach of the coordinates .r
( equated

to /ero I'cpresents a hvpersphere. \Ve mav. accordingly, call them

(//-}- 1 )-polvspherical coordinates of the points of N r Thev are a

generalization of the pentaspherical coi'u'dinates of .s'.. We say:

I
'

rjii'ti *'>' cniii-iHiKitett of points <>n n
liifperspliere

in
.S>'.

(

<ir>' polij-

UnJll'/'ifill fiil'il'lli ll/tfi'X nt'
jinitlfs

nil illl X
,

ilttn ll'llirll fill Jl
l/j> iT*/ >//!'/'''

/.v nff/'i -in/Til lihi'-illl If llfuft'fff'll, ( 'nlli lli'iltiniix nf S
f

ll'hli'h liilt'i' (In'

I"//" i'x/
'///' i ii I'll riii nt iit'i

1

/if/i'iir ft'<tHKt''if'inttti"H* ';'
tlo'

p'ili/apjn'ri''ill
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171. Minimum projection of S
n upon S

n ^ ( 'on.-ider in ,s . \viih

nonhomogeneous metrical coordinates, the minimum hvpereone

The section of this l>v the hvperplane ./ - n
i

+ (.' .
"

which is a hvpersphere in the N
( ,

defined by ./='!. \\V sav that

the vertex '',
of the minimum hvpereone ( 1 ) in N is projected min-

imally into the hvpersphere ( '2 ) in X
n _ r

. Obviously, in order that

the hypersphere (-) should be real the vertex of ( 1 ) must be imag-

inary. More exactly the coefficients <t , c/,, . <i
n ,

mu>t be real and

'/, ; pun
1

imaginary.

The coordinates of the vertex of a hypercoue in N
;

are then

essentially elementary coi'irdinates (^ 14<i
)
of a hypersphere in \ r

but the radius of the sphere is i<t
ti
instead of ^ . Let u>, howevei 1

,

introduce into S
n polyspherical coi'irdinates bast-d upon // -f - hvpei

1-

spheres. The coi'irdinates of the vertex of a hypercoue in N and.

consequently, of a hypersphere in \ _j are then // 4- - homogeneous
coordinates connected by a quadratic relation. They are therefore

higher sphere coi'irdinates of oriented hvperspheres in N
,.

Hut

\ve have seen that the polvspherical coi'irdinates in X are jtrojec-

tive eoi'irdinates of points on a hypersphere in N,,^. \N*e have,

therefore :

\\'e havi 1 in this \vav obtained a geometric construction by \vhieh.

for example, oriented sphei'es in N. mav be brought into a one-

to-one relation xvith points on a hypersphere in N..

EXERCISES

1. Slm\v analvtieallv Ilia1 a point .' :.',::.' ., on the li\ )"!-

plieri- ,/,- 4- ./.: -)-...-(- ./;;
.

]

T- in .s'
; jirojcrt

s liv the doulile projci-t inn

f tlii- text into t he h Vpersjiliere i /./',
4- .;

,
) ( f + + s

:

T ' '-''' v

----- L' ./
.

, t\ _ o 4- ( /'.'
-

.'
.

,

i -= in i,, _ ,..
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~. Establish the following relations between >'., >'
, and >' ,

<j>
bein

a hypersphere in >' :

>' >' >'
4 3

A ]>oiiit
on $. A point.

A hyperplane sec- A sphere.

t ion of
(f>.

A section of $ by a A point sphere. A special sphere

tangent hvperplane. complex.
A niininiuin line A minimum line. A pencil of tangent

on
<j>. spheres.

A ininiinnm plane A niiniinuni plane A bundle of tan-

on (ft. of second kind. gent spheres.

A section of
(f> liy A hvpersurfaee of A sphere complex

any >
4
'. order //. of order >;.

A minimum curve A minimum curve. A series of -s}

on
<f>. spheres, each of \vhidi

is tanur 'nt to 1 lie con-

>eeut i\ e 0!le.
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Kummi-r'> surface. .');J2 seiniperpentlicular. -\~,~>

Pliicker coordinates. .'J<U

Line. . lations of. L'7. :;.">. P,'">. P.<7. :M2. Pliicker's com]ilex surface. ;;34

:Jss : at intinity. 2 s
: properand im- Point, e.jiiation of. :)'.i. P.<7

proper. l
v -l: comjiletely and unjoin- Point-curve t ransformat ion. 1 27. 2'i:!. .'J(J1

pli-l'-ly imaginary. I'.M Point-point tran.-fonnation. 120. 2'JO

Line . ooiilinate-. lo. :>. ;;ol Point -]ihere. 1S2. is"). 2S.">

Lin-- element. 1:;;1 I'oint-surface transformation. 2''>2

l.ol icliev.-kian Lr

'-onieiry. 112 Polar, \vith re-pect to ]'oii,t pair. 2ii;

\\illl re.-pect to cill'Ve of -ecolld order.

M ._'
'

. In} ."ill; \\ith I'e-pect to curve of Second

M ' me-. 1'.'2 cla.-s. 7n ; in treiieral. 11H; with re-

es. :J7s spect to surface of second order. 2i ;

^l mi lii -. l
s

l. 1
s '

1

. U7s uith re-pect to -urta<-e of .-econd

n im plane-. l
x
-\ P.m. :_'>">. :17^ cla.-s. 2.'Js : \\ith re.-pect to lineal' line
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complex, .')!.'>; with respect tn quad- Singular planes. I'l'l. 222. :;2'.

ratic line complex, :J2S ; with respect Singular points. ~p2, "i*. 2<ni. 2'.';. :;L".I. :>:;

to hypersurface, .'is!, ;-J!i:J Space, linear, :{hh : on <|ua<lric. l<il

1'olar lines, conjugate. 22.'!. :!14 Speciali/ed ijiiailric. :','.i~,

I'olar spaces, conjugate. :;;i:; Sphere. 2oti. 2* t : oriented. :;H

I'ower of point, \\ith re.-pect to circle. Sphere coordinates. 341

I ."( I: with respect to sphere. 2*7 Spherical -comet ry. lit;

1'rojection. I'll; Mereo^ruphic. K'.:.'. 4n7. Splieroimailric. L'sl

11s ; minimum. 41H Surface, in point eonnlinates. L'II."I; in

1'rojective ueoinetry. in jilane. ItH : in plane coordinates, -Jl.'i ; analla^mat;.-.

three ilimeiisioiis. 24'J; on qiiatlric. sur- 274. I".'
1

.
1

: .-iiiLrnlai'. :',:',\. '.',">'< : Kuin

face, li'iii; in ?i dimensions, oHM mer's. :];!j : l'luckci-'>. :;:M

1'rojective mea.-uivincnt, 1U7. -i'jo

I'rojectivity, lo, 20 Tangent circles. 17,^. i".'"i

Pseudo circle, ll;; Taiment hyperplam s. ;>:;

Taiment line, to ciir\e, ~>\, 2UO; to siu 1
-

Quad rankle, complete. 44 face. 20")

Quadrilateral, complete, 44 Tangent line complexes. :L'^

Tangent plane to surface. I'tit;

/-flat. ;!^S 'I'anirent plane>. ;J4"i

Kadical axis. 20S Tangent sphere complexes. :).").}

Kadical center. L'I'.'.I Taimeiit spheres. L".I.",. ;;(.',. :;.')()

Radical plane. -jt'>7 Tetracyclieal coiirdinutes. l.'JN

iire. of points. H; of conies. 71 Thread. _'.">.

monic. IS Transformation, defined. 4 ; ahMne, In2:

I etlectioii. H)4 contact. l2n. 2">S; inversion. 121. lot;.

I e-ulu>. o2; 2ol. 27n. 2H 1 : linear. 1:1. 7s. ss. ].-,(.

1 elativity. 111) 111'.'. 2ld. 2ld. 2H1: metrical, lol. 1 .V,.

1 iemannian geometry. 1K5 24!. 2!'l: projective. 2H. Kt. 24U. 2">o :

1 im; surface. 27") jiedal. l.'Jl: I'oint-point. 12(1. 2 ( i(>;

lotation. lu:) point-curve. 127. 2'I.'! ; point-surface,

1 ulin^s on ijuadric. 2:12 202; quadric inversion. 121 ; recipro-

cal radius. 124. 2ul. 27n

Series, line. .'JOS. .'124: sphere. .'14'. i Translation. Id.'!

Sheaf of planes, 12

Singular complex of circles. 174

Singular lines. .">4. (i7. -']2'.i
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